
SD
...

The
Open Source
Multi-value

String
Database

1

Preface

SD, the Multivalue String Database

SD is a multivalue database in the Pr1me Information tradition. It contains open source code from the
Open Source databases openQM (revision 2.6.6) and ScarletDME and open source code developed by
the SD developers after the fork from ScarletDME. While it shares many of the same features, it was
forked to explore some new ideas as to what a modern multi-value database should contain.

OpenQM is currently copyright to Rocket Software. At the time of the Open Source release openQM
was copyright to Ladybridge Systems. This copyright covers all aspects of OpenQM including source
code, executable code, and documentation.

Acknowledgments

The majority of the content of Section 1 “A Multi Value Primer”: originated with the book “Getting
Started in OpenQM – Part 1 and Part 2.” The Getting Started in OpenQM series contains the
following copyright notice:

“This book is copyright to Rush Flat Consulting (2008-2013).

However, this book may be freely copied and distributed provided that the copyright to Rush Flat
Consulting remains in place.

Similarly, portions of this book may be freely quoted provided that Rush Flat Consulting is
acknowledged as the source of the quoted material.”

A special thanks goes out to Brian Speirs, the author of the Getting Started in OpenQM series for
allowing us to use this content in this manual.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no warrant or
fitness is implied. The information provided is on an “as-is” basis. The author shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the
information contained in this manual.

2

Table of Contents
 SECTION ONE A Multi Value Primer... 7
What is a multi-value database?...7

Non-conformity to relational rules.. 7
Loose data typing..9
Data storage...9
Hashed files... 10
Built in programming language...10
Built in reporting language..11
Summary...12

Multi-Value Terminology...13
Accounts..13
Users..13
Database files..13
Program files (or directory files)... 14
The VOC file... 15
Records (or items)... 15
Fields (or attributes), values, and sub-values..15
A Note On Capitalization..15
Command Variations... 16
Conventions In Manual... 16

Multi-value File Concepts..17
The data portion...17
The dictionary portion... 17
Creating and Deleting Files...19

Standard files.. 19
Directory files... 19
Multi-part files..19
Single level files...20
Q-Pointers...21
Listing the files... 22

Creating an Example Database..23
Create a file...23
Prepare the data.. 24
Create some dictionary items... 24
Import the data..26
Add another file to the database...27
Add a third file to the database...29

Editors.. 30
The command stack and command editing...30

The dot commands..31
Editing keys...32
Preserving the command stack between sessions..33

SD Database Files.. 34

3

Background...34
Hashed Files.. 34

Traditional hashed files...34
Dynamic hashed files..37
Analyzing a file.. 38
Setting or changing parameters.. 40
Example file configuration... 41

Directory Files...45
Data Storage.. 45

Variable length fields.. 45
String representation...46
Internal Data Storage.. 47
Binary Data...49

File VOC Entries... 50
Basic concepts..50

Different types of VOC entries..52
Dynamic and directory files... 52

Multi-files..52
Q-Pointers..53
Manual creation of F-type VOC entries.. 54
Alternate Key Indices..55
Summary...58

SDQuery...58
Anatomy of a SDQuery Statement.. 59

General syntax.. 59
Selection clause..60

Creating a dictionary item for use in selecting data..60
Multiple selection criteria..64
Comparison against a database value..65
Direct identification of items...66
Sort clause... 66
Display clause..67
Modifiers... 68
Grouping records...69
Generating summary information... 71

MIN, MAX, AVG... 72
Suppressing detail lines..72

Formatting column headings... 73
Totaling data...76
Page breaks... 79
Grand totals...80
Scaling data...81
Page headings and footings.. 82

Printing and Report Styles...84
Printing...84
The LPTR keyword..84
Print units..84

4

Initialising print units..86
Defining your own print units.. 87
Spooling print files...87
Deleting print files.. 88

Miscellaneous Aspects of SDQuery.. 88
Default display and phrases..88
Saving SDQuery statements for later use...90

Introduction to SDBasic...92
General Considerations...92

What is SDBasic...92
What is covered here?...92
Coding styles..92
Where is the GUI?.. 94

General Programming Issues...94
Creating, Compiling, and Running Programs..94

Statements, variables, tokens, constants, and operators..96
Statements...96
Variables...97
Tokens...98
Constants..98
Multi-value Variables..99
Operators.. 100

Substring extraction...100
Pattern matching..101
Alternative relational operators..101

Assignment... 102
Assignment shortcuts... 102
Substring assignment...102
Null values... 103

A simple program...103
Program... 104
Analysis... 105
Detail points..106
Some useful functions and statements...110

CRT and DISPLAY...110
PRINT... 111
INPUT...111
DCOUNT..112
FIELD... 112
ICONV / OCONV.. 113
LOCATE... 114
FIND... 119

Program control structures..120
IF-THEN-ELSE..120
CASE.. 121
Loops.. 122

Conditional loops... 122

5

For-Next loops...123
EXIT and CONTINUE..125

Subroutines... 125
Program structure... 126

Internal subroutines..127
External subroutines...127
Local subroutines... 130
User Defined Functions...131

Files... 132
Opening files...133

Error handling...134
Selecting data in files..136

Internal select... 136
External select..137
Which selection should I use?..138

Reading from files..138
Getting the ID from the select list for the READ...139
Writing to files.. 140
Closing files..140
Other methods of file handling...140

Multi-user issue... 141
When should locking be used..142
File locks..142
Record locks...143

SECTION TWO Getting Started With SD...146
Installation - Debian 12 with Gnome or Ubuntu 24.04..146
Installation on server without a GUI..149
Configuration... 150
SD Connection Methods.. 152
SD User and Group Accounts.. 156
TCL – The Command Line.. 159
Encryption in SD..168
Embedded Python in SD.. 172

6

 SECTION ONE A Multi Value Primer

What is a multi-value database?

Firstly, multi-value databases have been designed from the ground up as multi-user databases.

Multi-value databases have a number of characteristics that make them different from relational
databases such as mySQL, SQL Server, or Oracle.

These are:

➢ their data model does not (have to) conform to relational rules

➢ data is loosely typed

➢ data is stored in literal format, in variable length records

➢ data is stored in hashed files

➢ they come with their own in-built programming language

➢ they come with their own in-built reporting language allowing fully formatted reports to be
generated from the data

Modern multi-value databases also provide interfaces to external programming languages, socket
connections, and the ability to interact with the host operating system.

What do these things actually mean?

Non-conformity to relational rules

Take the example of a typical invoice. In a relational database, invoice data is stored in two tables. The
first table represents the invoice header and contains the invoice number, date, and customer reference
(among other things). The second table contains the line details of the invoice. This second table is
linked back to the invoice header by way of the invoice number. This structure is shown below:

Invoice number Date Customer number

12345 24 Apr 2007 9854

12346 24 Apr 2007 6234

12347 25 Apr 2007 4921

7

Invoice
detail
number

Invoice
number Product ID Quantity Price

671245 12345 9854 2 15.00

671246 12346 6234 1 32.50

671247 12346 4921 1 23.90

671248 12347 5651 3 12.50

671249 12347 5694 2 3.50

671250 12347 6234 5 32.50

These tables show the data for three invoices. The first invoice has one line item, the second has two
line items, and the third has three line items. The data in the second table (the line items) can be related
back to the correct customer through the invoice number.

In a multi-value database, all this data could be contained in just one table (referred to as a file). The
structure of the multi-value invoice file is shown below:

Invoice
number Date

Customer
number

Product
ID Quantity Price

12345 24 Apr 2007 9854 9854 2 15.00

12346 24 Apr 2007 6234 6234
4921

1
1

32.50
23.90

12347 25 Apr 2007 4921 5651
5694
6234

3
2
5

12.50
 3.50
32.50

If you examine these two structures, you will see that the single multi-value structure contains all the
same information as the two structures in the relational database. The difference is that each of the
Product ID, Quantity, and Price fields have multiple entries in the field.

Note that it is much quicker to read an invoice from a multi-value database than from a relational
database. Using invoice 12347 as an example, a multi-value database can read this invoice with a single
disk read1. In comparison, a relational database would use 4 disk reads for the data, plus a few more for
reading indices.

1 This assumes that the application knows the ID (primary key) of the invoice. If this is known, the database will
calculate the location of the item, and read it in a single read.

8

Loose data typing

In many databases, fields are defined as being of a specific data type, and the database will not allow
data of any other type to be stored in that field. Multi-value databases do not follow this pattern.

Firstly, database fields do not actually need to be formally defined. Of course, well structured databases
do have field definitions, but even then, the definitions are descriptive rather than prescriptive.

Secondly, even if the field definition says the data is of a certain type, the database itself places no
restrictions on the type of data actually entered into the field. Therefore, string data may be entered into
a numeric data field and vice-versa with no objections2 from the database3.

Thirdly, in the programming language, the typing of variables is not required, and may change within
the program. For example:

Temp = 0
…
…
Temp = ‘Q’

These characteristics mean that multi-value databases are flexible, and make it easy to accomplish
certain tasks. The flip side of this coin is that it is easy to end up with a database structure that is (a) not
defined, (b) only partly defined, or (c) incorrectly defined. Likewise, it is possible to end up with
unexpected data types in the database fields.4

Data storage

As noted above, many databases get you to define the field types. One of the reasons they do this is so
that numbers can be stored as a numeric data type. What this means is that the integer 123 can be stored
as a single byte representation. On the other hand, those databases will typically reserve either 4 or 8
bytes for an integer value, even though only one byte is being used.

Multi-value databases store data as literal strings. Therefore, 123 is stored as the string “123”, and the
field length is 3 characters. If the number changed to “12345” then the field will be expanded to 5
characters.

These variable length fields are achieved by using special characters to delimit the fields in the record.
The database counts along the delimiters to find the requested field, value, or sub-value.

Consider an address database. The name and address data fields will typically be 30 characters long in
a traditional database. With one name field and four address lines, the record will consume 150 bytes,
regardless of much data is actually stored in that space. A multi-value database will use as many bytes

2 No objections from a storage perspective. However, you may have difficulties processing the data using the
programming language if you mix data types.

3 Data type integrity could be enforced by using triggers on the data file to test the data before it was written to disk.
4 The phrase “Give them enough rope” is often used in discussions regarding multi-value databases. The flexibility and

lack of enforcement of rules make it easy to create poorly structured databases, maintained by poorly structured code.
Basically, the integrity of the system is in the hands of the developer(s).

9

as are entered, plus the delimiter characters (5 in this case). If a line is longer than 30 characters, then
the multi-value database is able to store the extra characters (where a traditional database cannot)
although you will then have an issue of how to print them if you are restricted to 30 characters on an
address label. If a line isn’t used, then the multi-value database will only store a delimiter character.

When storing strings like an address, a multi-value database may only require a third the disk space that
a relational database would use because it doesn’t need to reserve space for fields, it simply uses space
when it is required. When storing numbers, it is more evenly balanced, with the multi-value database
using more space for large numbers and less for small numbers.

Hashed files

A hashed file consists of a series of groups or buckets. Records are assigned to a group using a pseudo-
random method based on the record ID. This is how a multi-value database can find a record quickly if
the ID is known. The process is:

➢ The ID is hashed to form a large number.

➢ The large number is divided by the modulo (number of groups) of the file.
The remainder from the division is the group number.

➢ The entire group is read from disk, and the record is found by searching
through the group.

The combination of hashed files and storage of records as variable length strings make for a highly
efficient storage and retrieval system. See chapter SD -Files for more on the theory and practice of
hashed files in greater depth.

Built in programming language

Many databases (such as mySQL) do not provide a programming language to access or manipulate the
data in the database. Rather, they provide an ‘Application Programmer Interface’ (API) which allows
an external programming language (such as Perl, Python, PHP, or Visual Basic) to access the database.
This means that programmers can use a language with which they are familiar – if there is an API for
that language, and that the database provider does not have to put resources into developing and
maintaining a programming language.

Multi-value databases have a different approach. They tend to provide an entire database environment
including a programming language and reporting facilities. This is particularly useful for exploiting the
multi-dimensional nature of the database.

The actual language provided is a dialect of BASIC. This has been extended to be used with multi-
value data in a multi-user environment. It is simple to learn, but contains powerful data and string
handling capabilities.

10

Modern multi-value databases often also incorporate one or more API’s for use with external
languages. Typical API’s are for C, Visual Basic, and/or ODBC.

Built in reporting language

Multi-value databases incorporate a combined query and reporting language that allows you to:

➢ report on data contained in one or more files

➢ select records to be reported on (multiple selections)

➢ sort the data by multiple sort criteria

➢ break the data into groups

➢ create data columns derived from other data

➢ calculate totals, averages, and percentages

➢ format the data to display in a specified format

➢ format the report with headings, footings and page breaks

➢ and more

This is all achieved through a sentence based query language. For example:

SORT INVOICES WITH DATE GE “01-04-2013” AND LE “31-04-2013” BY CUSTNO BREAK-ON
CUSTNAME “’UV’” ENUMERATE INVNO INVDATE TOTAL AMOUNT HEADING “’DGC’Invoices
for April 2013’G’Page ‘PL’” FOOTING “Monthly invoice report” ID.SUP
NO.GRAND.TOTAL LPTR

This would select all invoices for April 2013, sort them into Customer No order, and produce a report
showing the customer name, and the invoice number, date and amount of each invoice. After all
invoices for each customer have been displayed, totaled and enumerated fields will be underlined and
the count of invoices, and the total amount of the invoices for that customer will be displayed. Pages
have a defined heading and footing, and the report will be sent to the printer.

Summary

Overall, multi-value databases are flexible and easy-to-use. The combination of an easy to use
programming language and reporting/query language that allows flexible reporting is a powerful
combination.

Interfaces to external languages allow multi-value databases to be incorporated seamlessly into a
Windows (or linux) environment, although this means that you forgo most of the inbuilt reporting
capabilities.

11

Multi-Value Terminology
Multi-value databases have their own terminology. This section provides a quick coverage of that
terminology and places it in a relational database and general computing framework.

Accounts

Information in multi-value databases is organized into accounts. An account is loosely analogous to a
database in relational terms.

In SD, an account is implemented as a folder or directory, with the database files implemented as
folders or sub-directories within that account.

When logging on to SD, a user is automatically logged into their home account (unless the -a<account
name> option is present). They then have direct access to all the database files in that account. Data
from files in other accounts can be accessed using a file pointer. This makes the data appear as if it is
local to the current account. Users can log between accounts at will (security allowing).

Overall, an account is simply a way to group related database files.

Users

A user must be registered to use SD. SD uses the operating system authentication to validate a user
name, although it is possible to add further restrictions on users once they have entered the SD
environment.

It is important to note the distinction between users and accounts. Accounts may be used by many users
(simultaneously), and individual users may use multiple accounts. Individual users may have multiple
concurrent sessions, in one or more accounts. On the other hand, some users will only use a single
account, and may be restricted to a single account even when multiple accounts are available.

Database files

A database file is analogous to a table in a relational database. Whereas a relational database is made up
of multiple tables, a multi-value database is made up of multiple files.

A multi-value database file normally consists of two parts – a dictionary, and a data portion – although
each part can exist independently of the other, and a dictionary may be associated with multiple data
portions.

12

A file dictionary exists to provide definitions of the data in the data file(s) for reporting purposes. This
qualification is important because:

➢ the dictionary does not define or restrict the data in the manner of a relational database. The
dictionary is purely descriptive

➢ the description is not enforced (by the database) and does not have to be correct!

➢ a data element can be described in multiple ways. For example, a numeric field may have three
definitions to show its value in units, thousands, and millions

➢ the primary use of the definitions contained in the dictionary is for reporting purposes using the
SDQuery reporting language.

In SD, database files are implemented as operating system folders or subdirectories. Dictionary and
data portions of the file each have their own folder, the data portion will take its folder name from the
filename you specify in SD, while the dictionary folder will have ‘.DIC’ added to the SD filename.

For example, assume that we are in an account named TEST which has been created in folder
/home/sd/group_accounts/TEST. If we create a normal file named TESTFILE, SD creates two sub-folders
beneath the TEST folder named TESTFILE and TESTFILE.DIC.

In normal files, each of the dictionary and data folders contains two files named ‘%0’ and ‘%1’. These
are hashed files, where SD maintains the filing structure and indices. While these files are visible at the
operating system level (e.g. through a file manager), the contents of these files should not be edited
using any operating system utilities.

In the case where a dictionary is associated with multiple data portions, the ‘data’ folder holds a sub-
folder for each data portion.

Program files (or directory files)

Traditionally, multi-value databases only used hashed files as described above. However, more modern
implementations such as SD recognize that hashed files are inefficient storage mechanisms for items
such as programs, and according have implemented the use of directory files for these types of items.

A directory file still consists of dictionary and data portions. However, the data portion is simply an
operating system folder. The dictionary portion continues as a hashed file as described above.

Items contained in a directory file can be accessed and edited directed from the operating system
environment as well as from within the SD environment.

While directory files can be used to hold “normal” structured database data, this is not recommended.
Data retrieval from directory files is much less efficient than from hashed files.

Typical uses of directory files are to store programs, images, or PDF files.

13

The VOC file

Multi-value databases provide a command driven environment. Accordingly, the database must be able
to understand the commands issued by a user. It does this by storing command definitions in a special
file known as the VOC or vocabulary file.

Each account has its own VOC file. This means that System Administrators can restrict actions within
certain accounts by removing selected keyword definitions, or that commands can be added to the VOC
that are relevant to that account.

Records (or items)

SD uses the terminology of records, fields, values, and sub-values.

A multi-value record is loosely analogous to a record in a relational database. The key difference is that
a multi-value record can be equivalent to a group of records in a relational environment. If you refer
back to Chapter What is a multi-value database, section Non-conformity to relational rules , you
can see that invoice number 12347 holds the data equivalent of several relational database records. This
is why an item can be thought of as a group of records.

Records also refer to programs. For normal programming languages, a program is an individual file
held within a folder. In the multi-value world, a program is a record within a file (a programs file). In
SD, you can actually have both views of programs, because if the programs are held in a directory file,
then SD will see them as records in a file, but the file manager will see them as files within a folder.

Fields (or attributes), values, and sub-values

Multi-value fields (attributes) are loosely equivalent to fields in a relational database. However,
attributes can be divided up into several values, which in turn can be divided into several sub-values.
Relational databases have no equivalent of values and sub-values, and need to use multiple tables to
store the equivalent data structures.

Section Non-conformity to relational rules has already shown how the ‘Product ID’ field on the
invoice can hold several data values. This is the core principle of the multi-value database.

Examples of the use of sub-values are less intuitive. Consider sub-values as a way of storing a bit more
related data.

A Note On Capitalization

Multi-value databases originated at a time when data entry was largely restricted to upper case
characters. These early databases only recognized commands entered in upper case. Likewise, all
programming was required to be in upper case.

14

As time went by and usage of mixed case became prevalent, different databases adapted in different
ways. SD attempts to be reasonably case insensitive:

➢ The programming language is not case sensitive.

➢ When a command is entered at the keyboard, or SD searches for dictionary items, it firstly
attempts to find the command or dictionary item in the case as typed. If the command or
dictionary item is not found, then the word is converted to upper case and the search repeated.

To illustrate the significance of the second point, consider that you have created a dictionary item
named ‘myDictItem’. If you subsequently reference that dictionary item in any command or query, then
you will need to type it exactly as you have named it. However, if you name the dictionary item in
upper case (i.e. ‘MYDICTITEM’), then SD will find the dictionary item whatever case you use in your query
command.

For this reason, it is recommended that you name all VOC items, dictionary items, and programs in
UPPER CASE.

Command Variations

SD accepts a number of command variations. These variations allow for:

➢ North American word spelling as well as British spelling (e.g. CATALOG is accepted as being the
same command as CATALOGUE)

➢ compatibility with other multi-value databases (e.g. ID-SUPP is accepted as a synonym for ID.SUP).

Conventions In Manual

SD is a command-driven environment.

Where the syntax of commands is shown, curly brackets5 denote optional components, while a pipe
symbol denotes that only one of the separated options should be used:

SEARCH {DICT} filename {ALL.MATCH | NO.MATCH} {NO.CASE}

5 In many computer manuals, optional components are often shown in square brackets. However, as square brackets are
used within the SD query language and programming language, curly brackets are used both here and in the
documentation to avoid confusion.

15

Multi-value File Concepts
It was noted earlier that multi-value files generally have two parts – a dictionary and a data portion.
What is the significance of this structure?

The data portion

The data portion contains (surprisingly enough) – data.

Each record in the database is identified by a unique identifier. In multi-value terms, this is called the ID

or item-id, and is equivalent to the primary key in relational databases. The real power of the ID comes
from its use as a data locator within the database.

As long as the database is given the ID of a record, then the database can (usually) read the record in a
single disk read – even when the database has not been indexed. This characteristic has long been used
to provide high performance in multi-value systems – by making the ID of a file ‘meaningful’ (such as a
customer number or part number), then the database can find the associated data very quickly.

An example of non-meaningful data as an ID is a sequential number (auto increment field). This is
simply an ID that is assigned to the record, and has no relationship to the data contained in the record.

The choice of the ID for each record thus becomes an important decision. There are arguments both for
and against using meaningful data as the ID. In general, meaningful data should only be used if:

➢ it is NEVER going to change

➢ it will always be unique.

Therefore, a customer number is good, but a customer surname is not.

These rules may seem simple, but in real life you will often find data that does not conform to
expectations. Duplicate numbers will exist in data where you expect the number to be unique, and
“permanent” numbers will change over time. Part numbers are notorious for this type of duplication
and change.

In a complex system, changing the primary key is a non-trivial exercise. Therefore, take care in the
initial design stage of the database. If in doubt, use a sequential number and index the database on the
key fields.

The dictionary portion

The dictionary portion contains data descriptions. SDQuery (covered later in this manual) uses these
descriptions to extract and display the data.

16

The following points may be of use in understanding dictionaries:

➢ Dictionaries are not a schema, although they should “describe” the data

➢ Dictionaries are not compulsory

➢ The descriptions they contain may not be accurate

➢ You can have multiple descriptions for each field

➢ Dictionary items can contain complex calculations as well as general
formatting instructions

➢ Dictionary items can look up data in other files on the system

➢ It is up to you as the user/administrator to define what goes in the dictionary.

Notwithstanding the above, the dictionary SHOULD represent the data in the data file. Maintenance
and understanding of the system is enhanced immeasurably if the dictionary is complete and up to date.
Therefore, it is highly recommended that you use and maintain dictionaries to document the database.

Dictionaries may contain the following types of items:

D Direct data items. These items describe the data in the file.

I Indirect data items. These items calculate a new value from the data in the
file.

L Link items. These items join the current file to another file.

PH Phrases.

C Calculated data values. These items contain an embedded SDBasic
program, and are used to generate calculated values.

A A PICK style attribute defining item.

S A PICK style synonym item.

X Other miscellaneous data.

The dictionary type (one of the above values) is declared in the first field of the dictionary item. This
manual will cover the first four of these dictionary types.

In the next part of this section, we will create a few dictionary items. We will use those dictionary items
to import and work with some data. But to fully understand dictionaries, you will need to read the
sections on SDQuery and SD Dictionaries – and then look the at SD manuals to provide greater depth
than will be covered here.

17

Creating and Deleting Files

Standard files

Files store the data you want to work with. The command to create a file in SD is:

CREATE.FILE filename

The CREATE.FILE command as shown creates a two-part file, a dictionary part, and a data part. In some
situations, you may only want to create a dictionary or a data portion. The commands to do this are
covered in the section on multi-part files below.

The command to delete a file is:

DELETE.FILE filename

Both of these commands have variants that allow individual parts of a file (a dictionary or data portion)
to be created or deleted independently of the other parts. These variants are normally used to maintain
multi-part files, a dictionary file that is associated with multiple data files. These are covered later in
this section.

Directory files

Creating a directory file is accomplished using the following command:

CREATE.FILE filename DIRECTORY

As you can see, this is just a small variation on the command to create a standard (hashed) file.

Note that only the data part is created as a directory file, the dictionary is still created as a dynamic
hashed (standard) file. In a directory file, all of the file items (records) are created as individual
operating system level files rather than being contained within a single dynamic file. Directory files are
usually used to store basic programs.

Directory files can be deleted using the standard DELETE.FILE command.

Multi-part files

Multi-part files need to be created when you want multiple data files to use a single dictionary. Typical
uses for this type of structure are for archiving data, or keeping data from individual years separate.

When creating a multi-part file, each individual part of the file is created with a separate command:

CREATE.FILE DICT dictname

CREATE.FILE DATA dictname,dataname

The first command creates just a dictionary portion, and the command structure is quite obvious.
However, the command to create a data portion needs a little more explanation.

18

In order to associate the data file with a specific dictionary, SD must know which dictionary name to
use. Therefore, the dictionary name is entered as part of the command. Note the comma that separates
the dictionary name from the data file name.

SD can change ordinary files to multi-part files if you add a second data part to it using the data
command above.

Deleting parts from multi-part files uses a similar format command to that used for creating the parts:

DELETE.FILE DICT dictname

DELETE.FILE DATA dictname,dataname

Note that SD allows you to delete the dictionary of a multi-part file without deleting the data portions.
Under normal circumstances, this would be an unusual thing to do. But perhaps the dictionary didn’t
actually contain anything so served no purpose on the system.

Consider the following examples of creating and deleting files:

CREATE.FILE TEST
Created DICT part as TEST.DIC
Created DATA part as TEST
Added default '@ID' record to dictionary

CREATE.FILE DATA TEST,TEST2
TEST already exists but not as a multifile
Convert to multifile named "TEST,TEST" (Y/N)? Y
Created DATA part as TEST\TEST2

DELETE.FILE DICT TEST
DICT portion 'TEST.DIC' deleted

DELETE.FILE DATA TEST
Delete all data components of multifile? Y
OK to delete DATA portion 'TEST\TEST'? Y
DATA portion 'TEST\TEST' deleted
OK to delete DATA portion 'TEST\TEST2'? Y
DATA portion 'TEST\TEST2' deleted
Multifile directory 'TEST' deleted'
VOC entry 'TEST' deleted

In this sequence, an initial file (TEST) is created. This file is then converted to a multi-part file with the
addition of a second data portion (TEST2). The dictionary is then deleted, followed by the two data
portions.

Single level files

Sometimes, you may want only a data file without any accompanying dictionary. Such a file may be
used for control purposes, and you do not want to do any reporting on the file using SDQue/ry.

The command format is similar to that used for multi-part files:

CREATE.FILE DATA dataname {DIRECTORY}

To delete such a file, you can use either the standard or the multi-part DELETE.FILE format. If you use the
standard format, SD reports that the dictionary part of the file does not exist:

CREATE.FILE DATA TEST
Created DATA part as TEST

19

DELETE.FILE TEST
DATA portion 'TEST' deleted
DICT part of file does not exist
VOC entry 'TEST' deleted

Q-Pointers

A Q-type record has three general purposes.

The primary one is to reference a file in another account. By placing the Q-type record in the VOC of the
current account, you can then reference the remote file as if it were a local file.

The second reason to use a Q-type is to create a synonym name or an alias for the target file. For
example, if you have a main file INVOICES, which you archive by financial year to an annual data file
associated with the INVOICES dictionary, then the full file name for the 2011-12 invoices could be:
INVOICES,201112 This is inconvenient to type, so you may want to create an alias for this file – e.g.
INV11.12 This is much easier to use in a SDQuery statement.

The third reason to use a Q-type is to reference a file on a remote SD server.

The best way to see what a Q-pointer does is to see one work.

One of the files in the SDSYS account is named BP (for Basic Programs). How do we access the contents
of that file from our current account ? We create a Q-pointer from our current account to that file. Let’s
call the Q-pointer BP.SDSYS.

We create the Q-pointer in the VOC of our current account, using one of the SD editors:

ED VOC BP.SDSYS Invoke the editor
VOC BP.SDSYS SD responds with this
New record and this
----: I Type I to go into insert mode
0001= Q Type Q to indicate a Q-pointer
0002= SDSYS This is the account name
0003= BP This is the file name
0004= Press enter to exit insert mode
Bottom at line 3 SD responds with this
----: FI Type FI to file the item
'BP.SDSYS' filed in VOC SD responds with this

Now, test the Q-pointer:

20

SORT BP.SDSYS
Page 1
BP.SDSYS....
BIGSTR_TEST
MSGTEST
PCL
PCL.GRID
PCODE_LIST
PY_TEST
SDTEST_V8
SD_ENCRYPT
SD_ENCRYPT_B
64
SD_ENCRYPT_E
XT
SD_EXT
TEST.THEN.EL
SE
TESTSZ
U0032
U50BB
VFS.CLS
sdTests

17 record(s) listed

We can see here that a Q-pointer can be used to access a remote file. The same concept can be used to
access a local file using a different name.

While a Q-pointer is not a real file, it accesses a real file. You can create, modify, and delete items in
the real file by using the appropriate commands on the Q-pointer.

Many people have got into problems because they deleted items in a Q-pointer file, thinking that they
were only deleting copies of the items. In fact, they deleted the real items in the remote file – so be
careful with Q-pointers.

To remove the Q-pointer, you simply delete the VOC entry:

DELETE VOC BP.SDSYS

Listing the files

There are four commands available to list the files that are available within an SD account:

LISTF List all F-type records in the VOC

LISTFL Show only local files (in the account)

LISTFR Show only remote files (referenced in the VOC but not in the account)

LISTQ List all Q-type records in the VOC

Files accessible by SD generally need either an F-type or a Q-type record in the VOC. What does that
mean?

When a file is created, the CREATE.FILE command will automatically create an F-type record in the VOC.
This lets other SD commands “find” the file when you reference it in SDQuery statements or SDBasic
programs.

21

In essence, an F-type refers to a file within the account, while a Q-type is a pointer to a file which is
(usually) in another account.

There is another category of files called ‘remote’ files. These files aren’t local to this account, but may
not be in any other account either. For example, we could set up an F-type item that points to a /tmp
folder. Because the location /tmp is not within the local account, this is considered a remote file.

SD comes with a few inbuilt remote files. You can list these with the LISTFR command. These are
largely system files.

By default, remote files are not used very much. However, if you, as a developer, wish to separate the
data components of an application or an account from the software components, you may find yourself
using remote files extensively.

Typing in any of the file listing commands will provide an output similar to those shown below:

Creating an Example Database

Create a file

Before we create a file, we need to ask:

➢ what are we going to store in the file

➢ what are we going to call the file.

There are lots of things to consider about the structure too, but that can wait until after we’ve created
the file.

Our first file will contain a series of exchange rates. We can download these in Excel spreadsheet form
from: https://www.rbnz.govt.nz/statistics/series/exchange-and-interest-rates/exchange-rates-and-the-trade-weighted-

22

index. Once you are on that page, download the file of daily exchange rates marked: ‘Exchange Rates and

TWI B1 Daily (2018 to current)’. The file name is: ‘hb1-daily.xls’.

As for a name, we could give the file a long name like EXCHANGERATES, or EXCHANGE.RATES, but for
convenience, we’ll use something a little shorter – XRATES. Therefore, our command to create the file is:

CREATE.FILE XRATES
Created DICT part as XRATES.DIC
Created DATA part as XRATES
Added default '@ID' record to dictionary

The computer responds by telling us that it has created the dictionary (DICT) and data (DATA) parts of the
file, and has added a record named @ID to the dictionary.

Prepare the data

The data we downloaded isn’t in the best layout for importing into SD. So, we’ll restructure that data so
it is ready for importing. Open the file using any spreadsheet program that can read Excel files. The
data we want starts in cell A6 .

We want to several things with this data:

➢ strip out the unnecessary rows (1 - 5)

➢ save the spreadsheet in csv format (Caution NOT in.CVS UTF-8)

Now save the spreadsheet as a CSV file. Choose ‘File | Save as’ from the menu, select a file type of
CSV, and save with the original base file name. This should save the file as ‘hb1-daily.csv’.

Create some dictionary items

We want to create a dictionary item for each of the exchange rates in the file. To do this, we are going
to use the MODIFY editor within SD:

MODIFY DICT XRATES

The editor will respond: Id (? for list):

Type in: DATE

A list of fields will now be displayed:

Id (? for list): DATE
 1: TYPE/DESC=
 2: LOC =
 3: CONV =
 4: NAME =
 5: FORMAT =
 6: S/M =
 7: ASSOC =

And a prompt will appear at the bottom of the screen:

TYPE/DESC:

23

This is asking what type of dictionary item are we going to create. Answer: D

The prompt changes to LOC This is the field number. Answer: 06

The remaining prompts and answers are:

CONV D
NAME Date
FORMAT 11R
S/M S
ASSOC

Just press enter at the ASSOC prompt to leave it blank. The following prompt will now appear:

Action(n/FI/Q/?):

If everything is correct, type FI to file the item. Otherwise, enter the line number of the entry you
would like to correct. Once the item is correct, enter FI to file it.

Now create the following dictionary items:

ID Type Loc Conv Name Format S/M Assoc
USD D 1 MR44, US Dollar 7R S
GBP D 2 MR44, UK Pound 7R S
AUD D 3 MR44, Aus Dollar 7R S
JPY D 4 MR22, Jap Yen 7R S
EUR D 5 MR44, Euro 7R S
CAD D 6 MR44, Canada Dollar 7R S
KRW D 7 MR22, SKorea Won 7R S
CNY D 8 MR44, Chinese Yuan 7R S
MYR D 9 MR44, Malay Ringgit 7R S
HKD D 10 MR44, HK Dollar 7R S
IDR D 11 MR22, Indonesia Rupiah 9R S
THB D 12 MR44, Thai Baht 8R S
SGD D 13 MR44, Singapore Dollar 7R S
TWD D 14 MR44, Taiwan Dollar 7R S

To exit the editor, simply press enter when it prompts you for a new ID. Now to see your completed
dictionary items, type:

SORT DICT XRATES
Page 1
@ID................. TYPE LOC........... CONV.. NAME........ FORMAT S/M ASSOC...
DATE D 0 D Date 11R s
@ID D 0 XRATES 10L S
USD D 1 mr44, us dollar 7r s
GBP D 2 mr44, uk pound 7r s
AUD D 3 mr44, aus dollar 7r s
JPY D 4 mr22, jap yen 7r s
EUR D 5 mr44, euro 7r s
CAD D 6 mr44, canada dolla 7r s
 r
KRW D 7 mr22, skorea won 7r s
CNY D 8 mr44, chinese yuan 7r s
MYR D 9 mr44, malay ringgi 7r s
 t
HKD D 10 mr44, hk dollar 7r s
IDR D 11 mr22, indonesia ru 9r s
 piah
THB D 12 mr44, thai baht 8r s
SGD D 13 mr44, singapore do 7r s
 llar
TWD D 14 mr44, taiwan dolla 7r s
 r

16 record(s) listed

Note that some of the descriptions have wrapped within their display field.

6 A field number of zero indicates we are referring to the item-id.

24

You probably understand that we have just created a set of descriptions of the data we are going to store
in the database – something like an SQL schema – but it won’t be totally clear what the elements of the
definitions mean.

The ‘D’ in the first field indicates that this is a ‘D-type’ (direct) dictionary item. A ‘D-type’ item describes
the date in the file.

An ‘I’ in this field would indicate that this field is an ‘I-type’ (indirect) field. An indirect field may also
go by the name of a virtual field, a lookup field, or a calculated field in other databases.

The second field contains the field number of the data. The listing shows that we are going to store the
US Dollar data values in the first field of the database. An ‘I-type’ dictionary item would contain an
expression in this field.

A field number of zero indicates that we are referring to the ID field.

The third field contains a conversion code. This code is used to convert the data between an internal
(storage) and an external (display) format. The conversion code we entered for ‘IDR’ (the Indonesian
Rupiah) was ‘MR22,’. The ‘MR’ means that we are using a masked decimal conversion where the output
should be right-justified. The first ‘2’ means that we wish to display 2 decimal places, while the second
‘2’ indicates the position of the implied decimal point in the data. The comma indicates that we should
insert thousands separators in the output format.

Let’s give an example. In January of 1999, there were 4,602.73 Indonesian Rupiah per NZ Dollar. If we
apply an input conversion of ‘MR22,’ to this value, we get an internal storage value of 460273. If we
apply an output conversion of ‘MR22,’ to the internal value of 460273 then we get a display value of
4,602.73.

We also used a conversion code of ‘D’ for the DATE dictionary item. ‘D’ is a generic date conversion.
This can take on many variations as we will see later.

The fourth field is the display name for the field.

The fifth field gives the field width and justification.

The sixth field tells us whether the data is single or multi-valued. All this data is single valued.

We haven’t used the seventh field. We can enter the name of an association in this field. An association
links several fields together so the query processor knows to process them as linked fields.

Now we have a data set ready to be imported, and a basic set of dictionary items to describe the data.
Let’s do the import.

Import the data

The section above described the process of creating a database file and populating the data dictionary
for the file. There still remains the task of populating the actual data from the csv file created earlier.

25

To simplify this process, a SDBasic program has been created, along with the required csv file. These
items can be downloaded from the SD website https://stringdatabase.com/manual_examples.zip

Steps to use:

Download the zip file and extract.

Create a directory file in your account with the following command:

CREATE.FILE EXAMPLES_DATA DIRECTROY

Copy the file xrate.csv into the EXAMPLES_DATA folder

Copy the file CREATE.XRATES into the BP folder.

From the SD command line enter:

BASIC BP CREATE.XRATES

RUN BP CREATE.XRATES

Did it work?

Theoretically, we now have all that exchange rate data in the SD file named XRATES. Lets check that.

SORT XRATES DATE Page 1
XRATES.... Date.......
18266 03 JAN 2018
18267 04 JAN 2018
18268 05 JAN 2018
18271 08 JAN 2018
18272 09 JAN 2018
18273 10 JAN 2018
18274 11 JAN 2018
18275 12 JAN 2018
18278 15 JAN 2018

Well … something is in the file – but what is it? The ID that is being displayed is nothing like the date
we had as the ID column in the spreadsheet. The answer is that the date has been converted to a serial
number.

Let’s try a little more:

SORT XRATES DATE USD GBP AUD JPY EUR
XRATES.... Date....... us dollar uk pound aus dollar jap yen euro...
18266 03 JAN 2018 0.7095 0.5219 0.9066 79.71 0.5883
18267 04 JAN 2018 0.7086 0.5245 0.9057 79.86 0.5901
18268 05 JAN 2018 0.7154 0.5275 0.9106 80.68 0.5923
18271 08 JAN 2018 0.7171 0.5283 0.9119 81.10 0.5954
18272 09 JAN 2018 0.7180 0.5292 0.9144 81.23 0.5998
18273 10 JAN 2018 0.7152 0.5285 0.9148 80.38 0.5992
18274 11 JAN 2018 0.7201 0.5330 0.9143 80.26 0.6022
18275 12 JAN 2018 0.7270 0.5362 0.9206 80.85 0.6030
18278 15 JAN 2018 0.7258 0.5284 0.9170 80.45 0.5953
18279 16 JAN 2018 0.7289 0.5284 0.9161 80.78 0.5944

If we check back to our source spreadsheet, we find that the data being displayed matches with the
values recorded there.

These SORT commands are actually basic SDquery reports. We will develop more advanced reports in
the later sections on Sdquery.

26

https://stringdatabase.com/manual_examples.zip

Add another file to the database

The SDquery section will cover (amongst other things) how to look up information in other files. To do
this, we need another file.

Our previous file looked at exchange rates. Let’s now create a file that contains interest rate data. We
can get this data from the same site as the exchange rate data obtained earlier. See:
https://www.rbnz.govt.nz/-/media/project/sites/rbnz/files/statistics/series/b/b2/hb2-daily.xlsx. Download the
spreadsheet marked ‘B2 Daily (2018 to current)’.

This spreadsheet has some cells containing ‘-’, which will be a nuisance for us. Select all the data in the
spreadsheet, and use the ‘Search and replace’ function to replace all of these with nulls.

Delete rows 1 to 5, then go to the bottom of the spreadsheet and delete the comment rows there. Save
the spreadsheet as a CSV file.

Now let’s create the SD file, and enter some dictionary items to define the data and the location of each
element for the data import.

CREATE.FILE IRATES

MODIFY DICT IRATES

Create the following dictionary items:

ID Type Loc Conv Name Format S/M Assoc
DATE D 0 D Date 11R S
OCR D 1 MR22, Official Cash Rate 7R S
OVERNIGHT D 2 MR22, Overnight Cash Rate 7R S
DAYS30 D 3 MR22, 30 Day Bank Bill 7R S
DAYS60 D 4 MR22, 60 Day Bank Bill 7R S
DAYS90 D 5 MR22, 90 Day Bank Bill 7R S
YRS1 D 6 MR22, 1 Yr Govt Bonds 7R S
YRS2 D 7 MR22, 2 Yr Govt Bonds 7R S
YRS5 D 8 MR22, 5 Yr Govt Bonds 7R S
YRS10 D 9 MR22, 10 Yr Govt Bonds 7R S

While there are other columns in the spreadsheet, we won’t import them.

The section above described the process of creating the second database file and populating the data
dictionary for the file. There still remains the task of populating the actual data from the csv file
created earlier. To simplify this process, a SDBasic program has been created, along with the required
csv file. These items can be downloaded from the SD website
https://stringdatabase.com/manual_examples.zip

Steps to use:

Download the zip file and extract

Copy the file irates.csv into the EXAMPLES_DATA folder

Copy the program file CREATE.IRATES into the BP folder.

From the SD command line enter:

27

https://stringdatabase.com/manual_examples.zip

BASIC BP CREATE.IRATES

RUN BP CREATE.IRATES

Did it work?

Theoretically, we now have all that interest rate data in the SD file named IRATES. Lets check that.

SORT IRATES DATE OVERNIGHT DAYS90 YRS10

The resulting list of interest rates should match the data in the source spreadsheet.

sort irates date overnight days90 yrs10 Page 1
IRATES.... Date....... Overnight Cash Rate 90 Day Bank Bill 10 Yr Govt Bonds
18266 03 JAN 2018 1.74 1.89 2.77
18267 04 JAN 2018 1.51 1.88 2.77
18268 05 JAN 2018 1.50 1.87 2.76
18271 08 JAN 2018 1.59 1.88 2.78
18272 09 JAN 2018 1.63 1.87 2.81
18273 10 JAN 2018 1.72 1.87 2.85
18274 11 JAN 2018 1.58 1.87 2.87
18275 12 JAN 2018 1.50 1.87 2.87
18278 15 JAN 2018 1.76 1.88 2.87
18279 16 JAN 2018 1.52 1.88 2.88
18280 17 JAN 2018 1.75 1.89 2.88
18281 18 JAN 2018 1.58 1.88 2.91
18282 19 JAN 2018 1.75 1.88 2.94
18285 22 JAN 2018 1.76 1.88 2.98

Add a third file to the database

The third file we are going to use is somewhat larger, and rather than stepping you through the creation
of the file, you can just download it. There are a few supporting files too.

Unzip the files, and place them in your user account. Now, we’ll need to add entries to the VOC so that
SD can find them. Use one of the editors (see the section on EDITORS) to create the following VOC
entries:

CT VOC NCY.C NCY.R TEX.H TEX.QCH
VOC NCY.C
1: F
2: NCY.C
3: NCY.C.DIC

VOC NCY.R
1: F
2: NCY.R
3: NCY.R.DIC

VOC TEX.H
1: F
2: TEX.H
3: TEX.H.DIC

VOC TEX.QCH
1: F
2: TEX.QCH
3: TEX.QCH.DIC

[An alternative approach is to create the files from the SD command prompt, then delete the files using
a file manager. Finally, drop the downloaded files into the places where you deleted the original files].

We now have a set of files, and a matching set of file pointers.

28

These files contain the following data:

NCY.C Country names

NCY.R Region names

TEX.H Harmonised code descriptions

TEX.QCH New Zealand export data by quarter, country, and HS chapter.

We’ll investigate this data later.

Editors
SD has three editors for use in a terminal emulation environment. These are:

ED A basic line editor
MODIFY A specialised editor used for editing dictionary items and data files
SED A full screen editor usually used for editing program source code

Although we have already used ED (when we created the MASTER.LOGIN item), this book will not use it
again. Nor will it cover the use of SED. To fully understand these editors, see the on-line help file.

Of the SD editors, it is MODIFY that you should particularly learn.

When used to edit dictionary items, MODIFY presents you with appropriate prompts for each line of the
dictionary item. Less obviously, MODIFY compiles dictionary items as they are filed, thereby highlighting
syntactical errors before the dictionary item is used.

When used to modify a data item, MODIFY uses the file dictionary to create the prompts displayed to the
user. In contrast, the ED editor simply displays a line number which is unhelpful if you do not know the
position of each data element in the item.

The basic syntax for using the MODIFY editor is:

MODIFY {DICT} filename {list of item-id’s}

If no item-id’s are specified, then MODIFY will prompt you for an item-id, or if a select-list is present,
then MODIFY will take the item-id’s from the select-list (see Section Error: Reference source not found
for information on select-lists). Example commands are:

MODIFY DICT XRATES

MODIFY DICT XRATES USD

MODIFY XRATES

MODIFY XRATES 15346

In the first and third examples, MODIFY will prompt for an item-id, while in the other two examples, the
item-id has been supplied on the command-line.

29

The command stack and command editing

SD is a command driven environment – that is, you type commands from the keyboard to control what
SD does. SD stores these commands as you work, and provides quick access to the last 99 commands
issued (this number is configurable), so you can either re-run an earlier command or edit the command
before running it.

These editing facilities are particularly important for use with SDQuery. SDQuery commands are often
built up over a series of iterations. This may start with a basic statement that selects and sorts records.
Break points and output data will then be added to this, followed by headings and footings. The final
command may cover several lines on the screen.

There are two sets of command line editing facilities. The first are the ‘dot’ commands that all are
present in all multi-value environments (with minor differences in each environment). The second
allows direct editing of commands on the command stack using the arrow keys.

The dot commands

The dot commands are literally a dot (period) followed by a single character. Some of these commands
are further followed by parameters that control SD’s response to the command.

To see the list of dot commands, type .? (dot question-mark) at the command prompt:

.?

.An text Append text to command stack entry n.

.Cn/s1/s2/G Replace s1 by s2 in stack entry n. G = global replace.

.Dn Delete stack entry n.

.D name Delete named sentence or paragraph.

.In text Insert text as stack entry n.

.Ln Display last n lines from stack. Default is 20.

.L name Display named sentence or paragraph.

.Rn Recall stack entry n to top of stack.

.R name Recall named sentence or paragraph to stack.

.S name s e Save stack entries s to e as sentence or paragraph name.

.Un Convert stack entry n to uppercase

.Xn Execute command n. Default is 1.

.X file id Execute command stored in named file and record
Spaces are required where shown. n defaults to one in all cases if omitted.
Use .DP, .LP, .RP and .SP to reference private VOC file.

The most common dot command you will use is .L (dot L). This provides a listing of recent commands:

.L
20 MODIFY DICT XRATES
19 SORT XRATES
18 MODIFY DICT XRATES
17 SORT XRATES
16 SORT XRATES DATE USD GBP AUD JPY EUR
15 FTTCL
14 FTSERVER 1
13 CLEAR.FILE DATA IRATES
12 sort dict irates
11 MODIFY DICT IRATES
10 SORT IRATES
09 FTTCL
08 FTSERVER 1
07 SORT IRATES DATE OVERNIGHT DAYS90 YRS10
06 CT IRATES 15346
05 sort xrates
04 CT XRATES 15346
03 sort irates
02 SORT IRATES DATE OVERNIGHT DAYS90 YRS10
01 SORT XRATES DATE USD GBP AUD JPY EUR

30

The most recent commands are at the bottom of the list nearest the current cursor position. The default
number of commands is 20, but this can be changed by specifying a number in the .L command:

.L5
05 sort xrates
04 CT XRATES 15346
03 sort irates
02 SORT IRATES DATE OVERNIGHT DAYS90 YRS10
01 SORT XRATES DATE USD GBP AUD JPY EUR

To execute a command that is already on the command stack, use .Xn where n is the number of the
command. To repeat the sort on the dictionary of the IRATES file (command number 2), we would
type .X2

.x2
SORT IRATES DATE OVERNIGHT DAYS90 YRS10
IRATES.... Date....... Overnight Cash Rate 90 Day Bank Bill 10 Yr Govt Bonds
15346 05 JAN 2010 2.52 2.80 6.13
15347 06 JAN 2010 2.37 2.79 6.07
15348 07 JAN 2010 2.38 2.78 6.06
15349 08 JAN 2010 2.25 2.78 6.06

When we execute a command like this, the specified command is executed as if it were just entered at
the keyboard. This duplicates the existing command, and pushes all previous commands down the
stack. In this case, we now have the command:

SORT IRATES DATE OVERNIGHT DAYS90 YRS10

at both position 1 and position 3 on the stack.

The .C command changes the text in a command. While we could change the text in any command on
the stack, it is usually most convenient to operate on the first command. In this case, we may need to
retrieve (.R) an earlier command from the stack.

.R2
02 SORT XRATES DATE USD GBP AUD JPY EUR
.C/AUD/CNY
01 SORT XRATES DATE USD GBP CNY JPY EUR

This sequence has retrieved the 2nd command from the stack, and then changed ‘AUD’ to ‘CNY’ in the list
of currencies to display. We could then execute this new command simply by typing .X

.X
SORT XRATES DATE USD GBP CNY JPY EUR
XRATES.... Date........ US Dollar UK Pound Chinese Yuan Jap Yen Euro...
15346 05 JAN 2010 0.7344 0.4564 5.0145 67.98 0.5096
15347 06 JAN 2010 0.7343 0.4591 5.0129 67.39 0.5113
15348 07 JAN 2010 0.7378 0.4606 5.0376 68.11 0.5119
15349 08 JAN 2010 0.7325 0.4597 5.0014 68.50 0.5119

In this case, because we did not specify a command number, it assumed the first command.

Use of the .S command and the alternate form of the .X command is covered later in this book (see
Section Error: Reference source not found). Otherwise, see the official SD documentation for
information on the rest of the dot commands.

31

Editing keys

SD provides a much simpler and more intuitive way to edit the commands on the command stack than
by using the dot commands. This is by using the editing keys (arrow keys, Home, End) on your
keyboard.

Press the Up Arrow at the command prompt. The first command on the stack will be displayed at the
prompt, with the cursor at the home position. Press the Up Arrow again, and the next command will be
displayed, and so on through the command stack. Pressing the down arrow will bring you back down
the command stack.

When you have got to the command you want, you can use the Left and Right Arrow keys to move
through the command, and the Home and End keys to move to each end of the command. Typing text
in from the keyboard will insert the text into the command at the cursor position, pressing Delete will
delete the text underneath the cursor, and using the Backspace key will delete the text before the cursor.

When you have finished editing the command, press Enter to execute it.

If you want to abandon the editing you have made, use the Up or Down Arrow keys to move off the
command, or use Ctrl-G to return to the command prompt. Your changes won’t be saved.

There are other keyboard editing commands and configuration options. Search the help file for
“command editor” for more information.

Preserving the command stack between sessions

Command stacks are saved between sessions in the stacks folder of your entry account. The stacks folder
isn’t visible from within SD, but you can see it using a file manager.

Now – what was that about the entry account? There is potentially a stacks folder in every account. This
is created the first time that a command stack is saved in the account. So, if you can’t see a stacks folder
in the account, it is because no stacks have been saved there.

If you have multiple accounts and there is a stacks folder in each of them, then which stack is used
when? Where is your current session stack actually saved?

You use the stack from the account by which you enter SD, and the stack is saved there when you exit –
even if you have logged to another account during the session.

Once you have SD set up, you will usually log directly into your normal working account, and you
won’t notice that there are different stacks in other accounts (because you’ll always use your account
stack).

If your account is not saving the stack, create an item in the VOC named $COMMAND.STACK with an X in
field 1. This is automatically added to new accounts when they are created, but may not be there for
some old accounts (or it may have been deleted).

32

If you view the stacks folder from a file manager, you will find one stack in there for each user (that has
entered that account). These are simply text lists which you can edit with a normal text editor. Note that
you should be logged off from SD before you edit these items in this manner.

33

SD Database Files

Background

The section “Multi Value File Concepts” gave a brief overview of the files in the SD system, and also
made passing reference to one of the advantages of the multi-value database file structures. This
advantage was that the database was able to find any record in the database, no matter what the size of
the database, with a single disk read – as long as the database was given the ID of the record. However,
it didn’t really explain the mechanics of the process used to achieve this.

This section will look at how multi-value databases structure their files. This will explain how the
database can find any record in the database, and look at other characteristics of the multi-value file
structure.

The explanation will initially use the fixed-size files found in other multi-value databases because these
illustrate the principles clearly. SD uses dynamic files, where the file size changes as data is added or
deleted. The data storage principles are the same with dynamic files, but the database system does some
extra work in the background when dynamic files are resized.

Note that this is a somewhat technical discussion. Readers can skip most of this section without
missing any essential items from a practical usage perspective. However, most people should read
Section File VOC Entries which deals with the VOC entries for files.

Hashed Files

Traditional hashed files

Multi-value databases use what are termed ‘hashed files’ for data storage. Hashed files use the
following principles:

➢ The file is made up of a series of storage containers (frames or buckets)

➢ The database “hashes” the ID of the record to generate a large number. This number is then
divided by the number of buckets in the file (the modulo) and the remainder calculated.

➢ The record is then stored in the bucket indicated by the remainder.

Consider the following example:

34

A file has a base size of 7 frames. We want to store an item with an ID of 12345 in the file. The ID
hashes to a value of 545,6737. Dividing this hash value by 7 and taking the remainder gives us a value
of 2. This means that the item will be stored in the third bucket (because we start counting from zero)8.

The above procedure is always followed when the record is saved to the file. It will also be followed if
the database is given the record ID and asked to get the record. However, it won’t be followed if the file
is being processed in sequential order – in that case, the system simply reads the records in the order in
which they appear in the database.

Following this process a little further, we can see that each frame (bucket) in the file will contain
multiple records. How do we know this? Well, records have to start in one of the buckets defined by the
file size. If there are more records than buckets, then there have to be multiple records per bucket.

So what happens when the database system looks for a record in the bucket? Basically, it reads the
whole bucket, and does a search through the contents of the bucket for the record being requested.

What happens when the bucket overflows? This will happen when the combined size of all the records
assigned to the bucket exceeds the bucket size. In this case, the excess data is loaded into an overflow
frame, and that frame gets linked back to the base frame.

An overflowed file imposes a performance penalty on the database system. It increases the number of
disk reads to find a given record, and severely overflowed files face greater risks of corruption.

Traditionally, multi-value databases used fixed file sizes. Consequently, overflowed files could become
a severe problem. Regular checks on file sizes were recommended to ensure that files did not become
severely overflowed.

Oversized files could also be a problem. In that case, a file would have many empty frames and use
excess disk space. More importantly, any process that required all data in the file would take longer
than necessary because all the empty frames would need to be read as the system gathered the data.

There are other aspects of hashed files you should be aware of:

➢ Hashed files work best when the item-id’s hash to an even distribution

➢ Hashed files work best where all records have similar sizes

➢ Hashed files work best when the average record size is only a small proportion of the bucket
size (say, less than 20 per cent)

➢ Large records pose particular problems

Let’s consider these:

7 Using the standard PICK hashing algorithm. SD probably uses a different algorithm. To find the PICK hashing
algorithm, google the comp.databases.pick newsgroup for “hashing algorithm”.

8 This is a bit easier to understand when traditional MV databases defined the file as starting at a given frame number
(file base). The group that the item belonged to was then determined by adding the remainder derived in this example to
the file base. Therefore, if the remainder from the division was zero, the item would be stored in the frame specified by
file base.

35

A hashed file will (almost) always have some unused space. Continuing the example used above, the
file has a modulo of 7. If each bucket is 2KB in size, then the total primary file size (i.e. excluding any
overflow) is 14KB. Further, the primary file will always be this size regardless of the number of items
in the file.

Ideally, we seek to size the file such that the records occupy most of the primary file space. There are
two basic requirements to do this:

➢ Each bucket within the file should be allocated a similar number of records

➢ The records should be of a size that allows efficient utilization of the bucket

Say we had 140 records to go into our file of modulo 7. Ideally, we would want 20 records to go into
each bucket. However, if the item-ids did not hash evenly, then we may some buckets with 50 items,
while others have only 5 or 10.

How do we know if a set of item-ids will hash evenly? In most cases, we don’t know. We create a file,
populate it, and then analyze the file to find its distribution of records. If there is excessive variability in
the distribution of records, then we would test other file sizes using a test utility. Once we find a
suitable file size, then we would resize the file to match the item-ids.

However, we do know that item-ids in a sequential series will always hash evenly. How do we know
this? When the item-id is incrementing by one for each new item, then the hashing algorithm will
effectively increment the bucket pointer by one for each new item. Therefore a sequential series of
item-ids will produce an equal number of records going to each bucket9.

What about the utilisation of space within the bucket? Consider a file with a bucket size of 1KB (the
default size for SD). If our average record size is 150 bytes, then we can fit six records (900 bytes) into
each bucket before that bucket goes into overflow. If we try to fit a seventh record, then the total size of
all records in the group10 (1,050 bytes) exceeds the bucket size. Therefore, an overflow bucket gets
allocated to that group and we end up with 1,024 bytes used in primary file space, and 26 bytes in
overflow.

What if the average item size was 350 bytes? Then we’ll only get two items into the bucket before it
goes into overflow. But two items is only 700 bytes, so the file will never be efficiently utilised. For
this size record, we would be better using a bucket size of 2KB (5 records before overflow), or 4KB (11
records before overflow).

What if the average record size was 600 bytes? In the case of 1KB frames, then we’d only get one
record per group before using overflow frames, and once again, the file space will never be efficiently
used.

What if the record size was variable? Well, hopefully the pseudo-random allocation of records to
buckets will largely cancel out the random variation in record size. In that case, each file group will

9 See the section on “Analyzing a file” for a slight qualification of this.
10 A group consists of the base bucket in primary file space plus any associated buckets in overflow. Therefore, a group

has a minimum size of one bucket, but may consist of multiple buckets.

36

have a similar size. The greater the number of records in each group, the more likely it becomes that
each group will have a similar overall size11 – provided that record sizes are evenly distributed, and the
records hash evenly. However, if large items cluster together, then some groups will go into overflow
while others remain relatively unutilised.

Finally, what if the record size was larger than the bucket size? In this case, the first item into a bucket
will completely fill the primary file space and extend into overflow. If other records are subsequently
allocated to the same bucket, then all of these records will be stored in overflow.

Consider also the outcome if the file does not hash evenly. In this case, some groups will be hugely
overflowed, while other groups remain empty.

Therefore, there are two challenges when dealing with large record sizes. Firstly, you want to minimise
the number of records being allocated to each bucket so that the number of records in overflow space is
minimised. Secondly, you want to minimise the number of empty buckets. The difficulty is that
minimising the number of empty buckets tends to come at the expense of putting more records into
overflow.

Most multi-value databases have got around this large record problem by moving large items to their
own special file space, and storing only a pointer to the large record in the primary file space. This has
the advantage of ensuring the primary file space is used efficiently, but comes at the expense of
requiring an additional disk read to read the record – the first disk read will retrieve the pointer from
the primary file space, while the second will read the record itself.

Dynamic hashed files

SD uses dynamic hashed files. The ‘dynamic’ part of the name means that the files resize themselves
automatically as records are added or deleted.

Dynamic hashed files retain the key advantage of normal hashed files of single read access of a given
record even without indexing, while removing (most of) the file administration procedures that
accompany traditional hashed files.

A quick summary of how dynamic files work follows:

➢ SD continually calculates a load factor for each file. This is the total file size as a percentage of
the primary file space.

➢ The load factor will change as records are added, modified, or deleted.

➢ If the load factor exceeds the SPLIT.LOAD parameter (default = 80%), then SD adds another bucket
to the primary file space, and splits an existing bucket to provide records for the new bucket.

11 For example, Rocket Software recommends that UniData group sizes should be at least 10 times the average item size.
Even after allowing for some unused space, this implies there should be at least 8 records per group, meaning that
groups are more likely to be evenly sized than if there were only 2 items in the group.

37

➢ If the load factor falls below the MERGE.LOAD parameter (default = 50%), then SD will merge
some of the buckets.

➢ If a record is larger than the LARGE.RECORD parameter (default = 80% of bucket size) is
encountered, then this record will be stored in the indirect record space, with only a pointer to
this record stored in the primary file space.

In many cases, you can simply leave SD to manage file sizes for you. However, if you are seeking to
maximise performance and/or you have unusual record sizes, then you may wish to change some of the
default settings. Some of the possible settings have been alluded to above.

In addition to the SPLIT.LOAD, MERGE.LOAD, and LARGE.RECORD parameters, you may also want to change
the GROUP.SIZE parameter. GROUP.SIZE sets the number of 1KB blocks that make up each bucket in the file.
In some cases, you may also want to define a MINIMUM.MODULUS for the file.

There are a couple of questions which spring to mind regarding these parameters:

➢ How can we tell how the file is structured?

➢ How do we set or change these parameters?

Analyzing a file

SD provides a program to analyze a file to help you determine whether it is appropriately configured.
This program is ANALYZE.FILE:

ANALYZE.FILE filename {STATISTICS}

For example:

ANALYZE.FILE IRATES
Account : /home/sd/user_accounts/sdintro
File name : IRATES
Path name : /home/sd/user_accounts/sdintro/IRATES

Type : Dynamic, version 2
Group size : 2 (2048 bytes)
Large record size : 1638
Minimum modulus : 1
Current modulus : 49
Load factors : 80 (split), 50 (merge), 80 (current)
File size (bytes) : 145408 (102400 + 43008)

This starts with basic information about where the file is located in the host filesystem, and then
provides information about the file configuration and status. In this case, the file is using a bucket size
of 1 KB, a LARGE.RECORD size of 1638 bytes (80% of the bucket size), a SPLIT.LOAD of 80 per cent, and a
MERGE.LOAD of 50 per cent. The current load factor is recorded as 80 per cent.

Other information notes that there are 49 buckets in the file at the moment (Current modulus), that the
primary file space is 102,00 bytes, and the overflow file space is 43,008 bytes, for a total file space of
145,408 bytes. If you view the file through Ubuntu Files, you will find that these reported file sizes
match the sizes of the %0 and %1 files respectively.

38

Adding the STATISTICS option provides additional information about the file:

ANALYSE.FILE IRATES STATISTICS
ccount : /home/sd/user_accounts/sdintro
File name : IRATES
Path name : /home/sd/user_accounts/sdintro/IRATES

Type : Dynamic, version 2
Group size : 2 (2048 bytes)
Large record size : 1638
Minimum modulus : 1
Current modulus : 49 (0 empty, 15 overflowed, 0 badly)
Load factors : 80 (split), 50 (merge), 80 (current)
File size (bytes) : 145408 (102400 + 43008), 80572 used
Total records : 1775 (1775 normal, 0 large)

 Per group: Minimum Maximum Average
Group buffers : 1 2 1.31
Total records : 23 65 36.22
Used bytes : 200 1580 1644.33

 Bytes per record: Minimum Maximum Average
All records : 36 48 45.39
Normal records : 36 48 45.39
Large records :

Histogram of record lengths

 100.0%
 Bytes ---
up to 16 |
up to 32 |
up to 64 | >>
up to 128|
up to 256|
up to 512|
up to 1K |
up to 2K |
up to 4K |
up to 8K |
over 8K |

Extra information included tells us that the file contains 1,775 records, which take up 80,572 bytes. Of
the 49 buckets in the file, none are empty and 15 are overflowed.

The next section of information tells us a bit about the use of file space. The ‘Group buffers’ line tells
us that each group in the file uses a minimum of one buffer (bucket), and a maximum of two buffer, for
an average of one point three one buffer per group. If there were some empty buckets, then the
minimum value would be reported as zero. Some buckets are overflowed, then the maximum value
would be two (or more).

The ‘Total records’ line tells us that each group contains between 23 and 65 records, with an average of
roughly 36 records per group. Likewise, the ‘Used bytes’ line tells us that each group contains between
200 and 1,580 bytes.

In the ‘Bytes per record’ section, we see that records occupy between 36 and 48 bytes each, at an
overall average of 45 bytes per record. All of these records are “normal” - i.e. there are no large
records.

39

Finally, the histogram shows that all the record sizes fit into a single size range.

This information is telling us that the file is fairly efficiently utilised. Similarly, records are of fairly
even size.

Could we get better utilisation? Maybe. The smallest group is less than half full (200 bytes), while the
largest group is going into overflow (1,580 bytes). There is a similar range in the number of records per
group. This suggests that the ID’s are not hashing evenly. You will recall from part one of this book that
this file contained monthly interest rate indicators and used an ID of YYYYMM. Given that this ID is not
random, and that the MM part of the ID will repeat over a short period (01 to 12), it is not surprising that
the hashing is not even.

Setting or changing parameters

File parameters may be set at the time of file creation using the CREATE.FILE verb, or changed at some
later time using the CONFIGURE.FILE verb.

Additionally, the default GROUP.SIZE parameter may be changed for the whole SD system by editing
,/etc/config or individually for specific users using the CONFIG command:

CONFIG GRPSIZE value

where value = 1, 2, 4, or 8 and represents the number of 1 KB blocks making a
bucket in the dynamic file.

Note the different name given to GROUP.SIZE when set via the configuration options. To see the current
setting for GRPSIZE (and all other configuration options), simply type:

CONFIG

To set the values of these configurable parameters at the time of file creation, use the options in the
CREATE.FILE verb:

CREATE.FILE filename {GROUP.SIZE size} {LARGE.RECORD bytes} {SPLIT.LOAD pct} {MERGE.LOAD
pct}

where: size = 1, 2, 4, or 8 representing the number of 1 KB block in each bucket
bytes = size of record before the record is stored indirectly
pct = load percentage before split or merge operations

For example:

CREATE.FILE SALES GROUP.SIZE 2 LARGE.RECORD 800

Reconfiguring an existing file uses similar parameters:

CONFIGURE.FILE filename {GROUP.SIZE size} {LARGE.RECORD bytes} {SPLIT.LOAD pct}
{MERGE.LOAD pct}

40

Note that changing the group size of an existing file requires exclusive access to the file – i.e. other
users will be denied access to the file while the file restructures itself – but changes to other parameters
will take place in the background.

Both CREATE.FILE and CONFIGURE.FILE have other configurable parameters, most of which are not covered
here. See the online help for more information on these parameters.

We can use a couple of these other options to resize the IRATES file analysed earlier. We want to see if
the file will hash evenly if the modulus is exactly 64. We can set the file to this size using the following
command:

CONFIGURE.FILE IRATES MINIMUM.MODULUS 64 IMMEDIATE

After running this command, the file analysis looks like:

ANALYSE.FILE IRATES STATISTICS

Account : /home/sd/user_accounts/sdintro
File name : IRATES
Path name : /home/sd/user_accounts/sdintro/IRATES

Type : Dynamic, version 2
Group size : 2 (2048 bytes)
Large record size : 1638
Minimum modulus : 64
Current modulus : 64 (0 empty, 0 overflowed, 0 badly)
Load factors : 80 (split), 50 (merge), 61 (current)
File size (bytes) : 176128 (133120 + 43008), 80572 used
Total records : 1775 (1775 normal, 0 large)

 Per group: Minimum Maximum Average
Group buffers : 1 1 1.00
Total records : 23 34 27.73
Used bytes : 1036 1580 1258.94

 Bytes per record: Minimum Maximum Average
All records : 36 48 45.39
Normal records : 36 48 45.39
Large records :

This change has moved all of the records in overflow back into primary file space, and reduced the load
factor to 61 per cent. It has also evened up the distribution of records (range 23 to 34 records per group,
down from 23 to 64), but it is still not completely even.

Example file configuration

Let’s consider an example where you might want to use a file configuration that is different from the
SD default:

Let’s say we want to store the daily transactions of a medium size supermarket. Because this file will
be growing constantly during the day, we want to create the file with an initial size large enough to hold
all the expected transactions for the day – this way SD won’t have to devote resources to file resizing
during the day.

The supermarket has 20 checkouts, and will have an average of 12 of them open throughout the day. It
is open from 7.00 in the morning until 11.00 at night. Each checkout processes an average of 25

41

customers per hour. Each transaction has an average of 35 line items. What characteristics should we
assign to the file?

First we need to calculate the average item size. From this, we will be able to set the group size, and
calculate the total file size. Given those two pieces of information, we should be able to derive the
minimum modulo to set for the file.

Each record will consist of:

Field Size
ID 4Key
Date 5
Time 5
Checkout No 2
Operator ID 4
Payment Reference 16or 1
Loyalty card number 16or 0
Total Value (excl tax) 5
Tax 4
Sub-total 61or 30

Item reference 16
Quantity (number) 1 or
Quantity (weight) 4
Price 4
Sub-total 22average

The key for this file is simply a sequential transaction number. We can quickly calculate from the
numbers given so far that we expect 4,800 transactions per day. On this basis, the ID will usually be a 4
digit number.

Our average item size will be:

Header 61
35 lines @ 22 bytes 770
Attribute marks 12
Value marks 140
Total 983bytes

and our total file size will be:

12 checkouts x 16 hours x 25 customers x 983 bytes = 4,718,400 bytes

How should we configure this file?

42

These records are nearly 1 KB each on average. If we want 10 records per group (or more), then the
group size needs to be in excess of 10 KB. The nearest we can come to this is to use the 8 KB group
size.

We can now calculate the modulo for the file:

4,718,400 bytes / 8,096 bytes per group / 75% load factor = 777

Or if you want to be a bit more aggressive in your file sizing, you could use a load factor of 80 per cent
to derive a modulo of 728.

Therefore, our CREATE.FILE command would look like:

CREATE.FILE DS,DS20081028 GROUP.SIZE 8 MIMIMUM MODULUS 780

Note this assumes use of a shared dictionary named DS (daily sales).

The biggest problem with this file configuration is the inherent variability in the size of supermarket
orders. There are two particular aspects to this variability – firstly, the daily variation in the amount of
business transacted along with seasonal variations; and secondly, the variability of transaction sizes
within any given day. Let’s consider the variability in transaction size first:

Individual purchases may range from a single item to a whole trolley load of 100 items. This
effectively means that our record size will vary from 59 bytes (single item purchased using cash and
without a loyalty card) up to 1,959 bytes for a 100 item purchase. Clearly, this range of record sizes
will create potential problems for the filing system.

Some options for dealing with this variability include:

➢ ignoring it

➢ using the LARGE.RECORD setting to move the large items into indirect file space

➢ normalising the file to move the transaction lines to a separate file.

Ignoring the issue may not be ideal, but it is the simplest option, and may work well enough.

Using the large record setting does not fix the problem either, but does move the largest records (say
those over 1,000 bytes) out of primary file space. This will effectively reduce the variability of the
record sizes – but will have the side effect of reducing the total amount of primary file space required.
Therefore, the minimum modulus could be specified a little smaller than was calculated above.

The final solution of suggesting file normalisation is akin to heresy when applied to multi-value
databases, but is actually a good solution to the issue of sizing this data. On the other hand, it may
complicate reporting and programming. Further, because of the necessity of providing a key for each
item in the transactions file, this will actually use more disk space. However, it is well worth
considering.

In this case, the file structures would consist of a header file with records of 30 to 61 bytes (plus 8 bytes
for field marks), and a transaction lines file with records of 22 bytes plus a key of about 8 bytes

43

(transaction number, separator, transaction line number, and field mark). Both files would consist of
evenly sized records which should assist in achieving good file utilisation, and the records are all small
enough to allow the default group size of 1 KB.

The file sizes would be:

12 checkouts x 16 hours x 25 customers x 60 bytes = 288,000 bytes (header)

12 checkouts x 16 hours x 25 customers x 35 lines x 30 bytes = 5,040,000 bytes
(transactions)

and modulos would be:

288,000 bytes / 1,024 bytes per group / 80% load factor = 351 (header)

5,040,000 bytes / 1,024 bytes per group / 80% load factor = 6,152 (transactions)

Accordingly, the file creation commands would be:

CREATE.FILE DS,DS20081028 MIMIMUM.MODULUS 350

CREATE.FILE DT,DT20081028 MIMIMUM.MODULUS 6150

Once again, this assumes the use of shared dictionaries named DS (daily sales) and DT (daily
transactions).

Note the following points:

➢ total file size has increased (5,328,000 bytes c.f. 4,718,400 bytes)

➢ the modulo of the transactions file is much larger than the previously calculated modulo (6,152
c.f. 780)

➢ the group size for each file is much smaller than calculated earlier (1 KB c.f. 8 KB).

Essentially, this file structure uses many small groups rather than fewer large groups.

The “right” structure of the data files will depend on local considerations. The above example is
intended to give some guidance as to how the different file configuration options work, and when to
use them.

Variability in the number of transactions per day could be handled by a set of factors which rate a given
day relative to a “normal” day. Mondays and Saturdays may be rated at 120 per cent of normal, while
the remaining days are about 90 per cent. In the two weeks before Christmas, days are given an
additional factor starting at 100 per cent of normal 14 days prior to Christmas, increasing to 300 per
cent of normal for the last full day of shopping before Christmas.

44

Directory Files

Hashed files are good for storing records which are relatively homogeneous in terms of size. Ideally,
the records shouldn’t be too large either. Traditional multi-value databases cannot store binary items
(such as images) in hashed files either, but SD does not have this limitation.

For data that doesn’t meet these criteria, you should use directory files. These are simply operating
system directories (folders) which are also defined in the VOC of SD so that SD can access them.

Within multi-value environments, the most common usage of directory files is for storing programs.
This allows the use of external editors to write and modify programs used in the multi-value
environment.

Similarly, because directory files are accessible from outside the multi-value environment, such files
are frequently used to exchange data between the multi-value environment and external systems.

However, there are some limitations associated with directory files that should be noted. In large part,
these limitations are the flip-side of the benefits of the directory files:

➢ file performance is lower than for hashed files (sorting and selecting data)

➢ directory files cannot be indexed

➢ you cannot apply triggers to directory files.

The restrictions on indexing and triggers are obvious enough – if processes outside SD add, modify, or
delete records in directory files, then SD’s indexing and triggers cannot keep track of those changes.
Therefore, data would become inconsistent (because trigger processes have not been applied), and
indexes would become out of date.

The lack of indexing partly explains the lower performance of directory files. However, at a more
fundamental level, it is more difficult for SD to sort and process directory files.

In summary then, use directory files for:

➢ programs

➢ some large items

➢ transferring data between SD and other environments.

Data Storage

Variable length fields

So far, there has been almost no mention of one of the key advantages of multi-value databases –
variable length fields (and by association, records). This provides several benefits:

45

➢ display restrictions do not limit the amount of data that can be entered into a field

➢ empty fields do not take up any space in the database

➢ changing field lengths do not require any restructuring of the database.

These benefits are best shown by contrasting the situation with a a typical SQL database:

SQL databases use a schema that rigidly defines the data entered into the database12. A data field that is
defined as containing 20 characters can only take a maximum of 20 characters, regardless of the actual
length of the data attribute. In contrast, you can enter any amount of data into a multi-value database
field – even if the dictionary item describing that field specifies a lesser field width. This highlights the
fact that multi-value database dictionary items are descriptive (rather than prescriptive). Of course, the
way this “extra” data is displayed will depend on the formatting instructions in the dictionary item, but
at least the data is available in the database.

Likewise, when an SQL database defines a field with a width of 20 characters, the database will always
allocate 20 characters to that field – even if that field is empty. In contrast, a multi-value database will
not allocate any space to an empty field (other than a field marker). This has potential to make a multi-
value database smaller than an equivalent SQL database.

So what happens when the database design needs to change? For example, the size of a data field needs
to increase. In an SQL database, you usually need to restructure the whole database to allocate more
space to the field. In a multi-value database, nothing changes at the database level – the database can
already take any amount of data (within reason) in any field.

To sum things up, variable length fields add a great deal of flexibility to database design. You can focus
on entering, processing, and displaying the data rather than worrying about the size of the data field
that is to be entered.

The flip side to this flexibility is that it is easy to start doing things in multi-value environments without
thinking through the design issues properly.

String representation

The other unusual aspect of multi-value storage is that the data is all stored as an ASCII string – that is,
using alphanumeric characters. The number 12348 is literally stored in the database as ‘12348’.

Once again, compare this with the situation in other databases. Typically, those databases will store
numbers in fields defined as having a numeric format. Importantly, those numbers are converted to
hexadecimal before being stored. Therefore, 12348 is actually stored as ‘303C’ - i.e. 4 bytes instead of
5 – but the 4 bytes may well be stored within an 8 byte field.

12 Some modern SQL databases have removed some of these restrictions. For example, Oracle allows fields to be
redefined without a complete restructure of the database, while MS Access uses variable width fields for text fields,
making the field width restriction advisory rather than definitive.

46

What is the benefit of this? There is no great advantage in storage space requirements – particularly
with the large capacity hard disks that are common on all modern hardware. Multi-value environments
generally use less space for any given storage requirement, but this is more due to the variable length
fields than to differences in numeric storage methods. It does make the contents of the database human-
readable – but looking directly at the contents of the database files (through a file utility) is not
recommended.

The major advantage (or disadvantage depending on your viewpoint) is that you gain flexibility by
treating everything as a string:

➢ you don’t need to define the fields as strictly integer, real, or string

➢ you can store string data in fields that are mostly numeric, and vice-versa.

The first point simply means that you don’t need to formally define your fields – but you should do so
anyway. The whole point of a field is to group data of similar types.

The second point is also not recommended. Storing data of different types within a field makes analysis
of that data difficult.

Overall then, multi-value environments store data as strings largely because there is no formal database
schema that says that a particular field must be of a specific data type. While it does give some
advantages in terms of reducing the overhead of database design, this isn’t a step that you should skip.
You should design your database with the intention of storing particular data types in specific fields.

However, there are some advantages when it comes to programming in the database environment.
These advantages are that variables can be re-used with changing the data type, and that string and
numeric values can be combined together without type conversion (see page Error: Reference source
not found for an example of this). Once again, these advantages do not come without disadvantages –
notably the danger of trying to perform numeric operations on alphabetic characters.

Internal Data Storage

While it may seem unnecessary to know how SD stores data internally, this knowledge can actually
help you (as a developer) to handle the data better.

The way that data is stored follows on directly from the previous two points – data is stored as a string
in variable length fields. SD uses a number of special delimiter characters to identify the boundaries of
fields, values, sub-values, and records. By knowing this, you can use SD’s special string handling
functions to extract data fields, and groups of fields.

The full list of delimiter characters, their normal ASCII values, and their internal tokens are shown
below:

Mark ASCII Token Representation

Item 255 @IM

47

Mark ASCII Token Representation

Attribute or Field 254 @AM or @FM ^

Value 253 @VM]

Sub-value 252 @SM or @SVM \

Text 251 @TM

While the ASCII values and tokens are functionally identical, it is recommended that you use the tokens
in your programs. This is partly because the code is more readable, and partly because it allows the
delimiter character to be changed in the future (to take advantage of Unicode character sets for
example).

The representation column in the table shows how delimiter characters are often displayed in text.
Note, this is different from the way that your terminal may display the character. A terminal will use the
character associated with the character set that you are using.

Prior to the introduction of standard tokens, many multi-value BASIC programs used constants for the
same purpose:

EQUATE AM TO CHAR(254)
EQUATE VM TO CHAR(253)
EQUATE SM TO CHAR(252)

The program would then use the constants defined above in the rest of the program.

Now let’s consider what a stored record looks like, and how we might use that information to write
more efficient programs. In general, a stored record will look like:

item-id^a1^a2-v1]a2-v2-sv1\a2-v2-sv2^a3^a4-v1]a4-v2]a4-v3 etc

where:

a = attribute
v = value
sv = sub-value

When the item is read into a variable, the item-id is stripped off, while the variable contains the rest of
the string (from a1 onwards) as is.

Let’s say the item has 16 attributes, and is stored in the variable rec. We want to create a new item
consisting of attributes 11 through 16. We could do this as follows:

newrec = ''
FOR ii = 1 TO 6
 newrec<ii> = rec<ii + 10>
NEXT ii

or we could do it as:

48

newrec = FIELD(rec, @AM, 11, 6)

Both methods get attributes 11 through 16 and assign them to a new record, but the second method,
which treats the entire record as a delimited string, is much more efficient.

Older code may use a technique like:

xpos = INDEX(rec, @AM, 10)
newrec = rec[xpos + 1, 9999]

Similarly, if we want our new record to have attributes 1 to 6 and 12 to 16, then we could:

newrec = ''
FOR ii = 1 TO 11
 IF ii GT 6 THEN
 jj = ii + 5
 END ELSE
 jj = ii
 END
 newrec<ii> = rec<jj>
NEXT ii

or:

dummy = FIELD(rec, @AM, 7, 5)
newrec = rec[1, COL1() - 1]:rec[COL2(), LEN(rec)]

or:

newrec = FIELD(rec, @AM, 1 6):@AM:FIELD(rec, @AM, 12, 5)

Once again, the second and third methods treat the existing record as a string, and use string extraction
techniques to build the new record from the constituent parts of the existing record.

Binary Data

As noted above, SD can store binary data in hashed files. This is slightly unusual in multi-value
databases because binary data is likely to contain some characters that match the system delimiters
(ASCII 251 to 255).

Just because this is possible, it doesn’t mean that it is always a good idea. Use your judgement – large
binary items such as images or movie files probably shouldn’t be stored in hashed files. A more
appropriate arrangement for such items would be to rename the binary item to a sequential numeric
name and store the item in a directory file. The hashed file should then contain the real file name and
the path to the renamed item in the directory file (or the SD filename and itemname).

Even when you do store binary data in directory files, you need to be aware of how SD handles such
items:

SD assumes that an item stored in a directory files is a text item, and that the appropriate representation
of that item within the multi-value world is to replace the line-ends with field marks. Clearly, that is the
wrong thing to do if the item is actually a binary item.

49

To prevent this happening, MARK.MAPPING should be turned OFF prior to reading or writing the binary
item, and then turned back ON after the read/write.

For more information on this, see the topics ‘Directory Files’ and MARK.MAPPING in the online help.

File VOC Entries

Basic concepts

A key feature of multi-value databases is that most things are defined in the VOC file. This is really how
SDQuery works – all the elements of a SDQuery must be present either in the VOC or in the dictionary of
the file being queried.

This is true for files too. It is the file entry in the VOC that lets each part of SD find the file to operate on.
Let’s prove this:

In Part 1 of Getting Started in SD, we created a file named IRATES. The VOC entry for this file looks like:

:CT VOC IRATES
VOC IRATES
1: F
2: IRATES
3: IRATES.DIC

The ‘F’ on line 1 tells SD that this is a file. It is only the first character that is relevant to SD, so you can
add a description of the file on this line:

VOC IRATES
1: File of Intrest Rates
2: IRATES
3: IRATES.DIC

This description will be displayed when you list the files in the account using the LISTF or LISTFL
commands.

Line 2 of the VOC entry tells SD the name of the data file, while line 3 has the name of the dictionary
file.

SDQuery uses the information in this item to find both the dictionary and the data file so that it can report
on the file:

50

SORT IRATES WITH YEAR = "2020" DATE DAYS30 DAYS60 DAYS90 ID.SUP
Date....... 30 Day Bank Bill 60 Day Bank Bill 90 Day Bank Bill
03 JAN 2020 1.19 1.24 1.29
06 JAN 2020 1.20 1.24 1.28
07 JAN 2020 1.20 1.23 1.27
08 JAN 2020 1.20 1.22 1.24
09 JAN 2020 1.20 1.21 1.23

Now, let’s copy the VOC entry to a temporary item, and delete the main VOC entry:

COPY FROM VOC IRATES,TEMPIRA
1 record(s) copied.

CT VOC TEMPIRA

VOC TEMPIRA
1: F
2: IRATES
3: IRATES.DIC

DELETE VOC IRATE
1 record(s) deleted

Note that although we’ve deleted the VOC entry for the file, we haven’t deleted the file itself. You can
check this by looking at the SDINTRO account using Ubuntu Files. You can also display the contents of
the file by using the TEMPIRA file pointer that we created:

SORT TEMPIRA WITH YEAR = "2020" DATE DAYS30 DAYS60 DAYS90 ID.SUP
Page 1
Date....... 30 Day Bank Bill 60 Day Bank Bill 90 Day Bank Bill
03 JAN 2020 1.19 1.24 1.29
06 JAN 2020 1.20 1.24 1.28
07 JAN 2020 1.20 1.23 1.27
08 JAN 2020 1.20 1.22 1.24
09 JAN 2020 1.20 1.21 1.23

But, if we try to reference the file using the FX.DAILY name, SDQuery will not be able to find the file:

SORT IRATES WITH YEAR = "2020" DATE DAYS30 DAYS60 DAYS90 ID.SUP
File not found

OK – Now let’s put things back the way they should be:

COPY FROM VOC TEMPIRA,IRATES
1 record(s) copied.

CT VOC IRATES
VOC IRATES
1: F
2: IRATES
3: IRATES.DIC

DELETE VOC TEMPIRA
1 record(s) deleted

So, what have learnt from this:

➢ SD relies on VOC entries to find files

➢ VOC entries exist independently of the data and dictionary files, and can have a different name

➢ Files can exist without VOC entries and vice-versa

51

➢ A file can have more than one VOC entry at any given point in time

➢ We can manually create VOC entries for existing files.

Different types of VOC entries

Dynamic and directory files

Both dynamic files and directory files have the same type of VOC entry. We can see this by comparing
the VOC entry for FX.DAILY (a dynamic file) with that of the QUERIES file (a directory file), also discussed in
an earlier section.

:CT VOC QUERIES
VOC QUERIES
1: F
2: QUERIES
3: QUERIES.DIC

Multi-files

Multi-files have a slightly different VOC entry:

CREATE.FILE DICT TEMP
Created DICT part as TEMP.DIC
Added default '@ID' record to dictionary

CT VOC TEMP
VOC TEMP
1: F
2:
3: TEMP.DIC

CREATE.FILE DATA TEMP,TEMP1
Created DATA part as TEMP/TEMP1

CT VOC TEMP
VOC TEMP
1: F
2: TEMP/TEMP1
3: TEMP.DIC
4: TEMP1

CREATE.FILE DATA TEMP,TEMP2
Created DATA part as TEMP\TEMP2

CT VOC TEMP
VOC TEMP
1: F
2: TEMP/TEMP1�TEMP/TEMP2
3: TEMP.DIC
4: TEMP1�TEMP2

Note the following points from this sequence of commands:

➢ Following the initial dictionary creation, the VOC entry does not contain any reference to a data
file

52

➢ When a multi-file data portion is added to the file, the format of the second attribute changes,
and a new attribute (attribute 4) is added:

○ Attribute 2 now contains the path name (relative to the account base) to the data file(s)

○ Attribute 4 contains the sub-file name of the multi-file

➢ As more data portions are added to the file, attributes 2 and 4 become multi-valued to store the
path and file names.

The documentation notes that F-type VOC entries also have a fifth attribute. This controls the way the
ACCOUNT.SAVE and FILE.SAVE commands treats this file. See the documentation for more details on this
attribute.

Q-Pointers

Q-pointers are an alternate method of referencing a file. They are typically used when:

➢ the file resides in another account

➢ the file is part of a multi-file, and you wish to use a simpler filename

➢ the has a long filename and you wish to use a simpler filename.

Q-pointers have the following structure:

1: Q
2: Account name
3: File name

To reference the BP file in the SDSYS account, the Q-pointer will look like:

1: Q
2: SDSYS
3: BP

We might name this item: BP.SDSYS

We would create this item using one of the editors available in SD (ED, SED, or MODIFY; MICRO if you ; or
any other editor that you have enabled). Don’t include the line numbers when entering the item! We
could also use the SET.FILE command to create the Q-pointer.

A Q-pointer to one of the data portions of the multi-file created on the previous page would look like:

1: Q
2: SDINTRO
3: TEMP,TEMP2

If we called this item T2, then we could use the filename T2 in our SDQuery sentences, or within BASIC
programs, whenever we wanted to access the data in TEMP,TEMP2.

53

Note that Q-pointers can be chained. That is, one Q-pointer can point to another Q-pointer, which in
turn could point to another Q-pointer, or could point to an F-type entry. This method is not
recommended but, it can be quite useful.

Consider the situation where you wish to move an important file from one account to a new account.
You already have a number of accounts pointing to the file using Q-pointers. Rather than change all of
the existing Q-pointers (and risk missing one of them), simply move the file to its new location, and
place a Q-pointer in the VOC of the old account pointing to the new location. When one of the other
accounts wish to access the file, they will look up their own Q-pointer which will direct them to the old
location. They will find a Q-pointer there which will direct them to the new location.

Manual creation of F-type VOC entries

It is clear that Q-type VOC entries are created independently of the file itself. On the other hand, F-type
VOC entries are maintained automatically by SD when we create and delete files.

What is less apparent is that we can create F-type entries manually to point to existing files on the
system. Such files may be within the current account, or have a totally different path.

For example, we created a Q-pointer to the BP file in the SDSYS account earlier. We could have defined
that as an F-type record as follows:

1: F
2: /usr/local/sdsys/BP

or:

1: F
2: @SDSYS/BP

This is a slightly unusual example because we haven’t created a third line in the VOC entry for the
dictionary path. The reason for this is quite simple – the BP file in SDSYS does not have a dictionary, and
if we specify a path for it, SDQuery will report that it cannot open the dictionary. However, we would
normally specify the path to the dictionary in attribute 3 of the VOC entry.

The second example uses the predefined token @SDSYS. It is preferable to use this token than specify the
pathname for SDSYS because some administrators will place SD in a non-standard location. By using a
token for the location of the SDSYS account, we can transfer our applications between systems with
confidence that they will still work in the new system.

SD automatically defines two more tokens to be used in this manner - @TMP and @HOME. See the
documentation for further information on these tokens.

We could also create an F-type entry for a directory on the system so that SD can access the directory
as if it were a file created by SD. For example:

1: F
2: /tmp

54

Once again, we haven’t included a reference to a dictionary file because the ‘Temp’ directory doesn’t
have a dictionary.

Given that we can manually create F-type VOC entries for existing files, and such entries serve a similar
purpose as Q-pointers, when should we create F-type VOC entries for existing files, and when should we
create Q-type VOC entries?

As with many issues in multi-value databases, the answer is one of principle, rather than what is
enforced by the database. The database lets you use either type of VOC entry, but what is the principle
behind each type of entry?

An F-type entry is created when SD creates a data file. The file is created within the account, and the F-
type VOC entry represents an ownership of that file by the account.

A Q-type entry can point to anywhere – the current SD account, another SD account, or directory file
elsewhere within the operating system. It does not confer ownership of the file – rather it simply says
that this account uses that file.

Using these basic principles:

➢ Let SD manage the F-type entries for files within an account

➢ Use a manually created F-type entry to create a reference to a file that is not part of the SD file
system

➢ Only have one F-type entry per file used by SD

➢ Use Q-type entries to refer to SD files in other accounts, or to provide files with simpler names
(in any account).

Alternate Key Indices

An alternate key index is a means of increasing the speed of accessing a set of records from a file. It
does this by indexing fields from the file, or expressions based on the file data, in a special lookup file.
When you select on the main file using one of the indexed fields, SD can access the indexed data and
return the list of matching records without having to search the entire main file.

Indexing becomes more important as:

➢ the main file gets larger

➢ the number of records to be selected becomes a small proportion of the total number of records
in the file

➢ the load on the system becomes higher

➢ the need for rapid response times increases.

Let’s see what performance gains we can achieve by indexing a file:

55

We’ll use a file named PRODUCT-DATA. This file currently contains 2.14 million records. ANALYSE.FILE
produces the following statistics:

Type : Dynamic, version 2
Group size : 2 (2048 bytes)
Large record size : 1638
Minimum modulus : 1
Current modulus : 59572 (0 empty, 8871 overflowed, 81 badly)
Load factors : 80 (split), 50 (merge), 80 (current)
File size (bytes) : 153077760 (122005504 + 31072256), 98821548 used
Total records : 2140774 (2140774 normal, 0 large)

 Per group: Minimum Maximum Average
Group buffers : 1 3 1.15
Total records : 10 99 35.94
Used bytes : 36 2048 1658.86

 Bytes per record: Minimum Maximum Average
All records : 24 116 46.16
Normal records : 24 116 46.16
Large records :

We can see that the modulo is nearly 60,000 groups, and that the file has some groups in overflow.
Primary file space is around 120 MB, and there is 30 MB of overflow space.

The file has a key of:

yyyywwttnnnlll

where: yyyy = season
ww = week
ttnnn = plant identifier
lll = product line identifier

Typical selection processes involve one or more of these key components. Dictionary items to extract
these components are:

Dictname Type Expression Conv Name Format S/M

SEASON I @ID[1,4] Season 6R S

WEEK I @ID[5,2] Week 4R S

ME.NO I @ID[7,5] ME No 6L S

LINE3 I @ID[12,3] Line 3R S

We’ll create a simple paragraph to time a selection from this file:

CT VOC INDEX.TEST
VOC INDEX.TEST
1: PA
2: TIME
3: SSELECT PRODUCT-DATA WITH ME.NO EQ "ME078" AND WITH SEASON EQ "2007"
4: CLEARSELECT
5: TIME

Running this (twice) on a freshly rebooted system gave the following results:

56

INDEX.TEST
21:41:34 4 FEB 2010
7697 record(s) selected to list 0
Cleared numbered select list 0
21:42:46 4 FEB 2010

INDEX.TEST
21:42:55 4 FEB 2010
7697 record(s) selected to list 0
Cleared numbered select list 0
21:43:46 4 FEB 2010

On the first run, the selection took 1m 12s. This time decreased to 51s on the second run. This decrease
in time is due to a portion of the file remaining in memory after the first run.

Now, we want to create the indices. As we are using the ME.NO and SEASON dictionary items, we will
create indices on these fields:

CREATE.INDEX PRODUCT-DATA SEASON ME.NO
Added index for SEASON
Added index for ME.NO

BUILD.INDEX PRODUCT-DATA ALL
Building index 'SEASON'...
2140774 records processed
Populating index...
Building index 'ME.NO'...
2140774 records processed
Populating index...

We could have used the MAKE.INDEX command rather than the combination of CREATE.INDEX and
BUILD.INDEX.

We can use the LIST.INDEX command to view information about the indices:

LIST.INDEX PRODUCT-DATA ALL STATISTICS
Alternate key indices for file PRODUCT-DATA
Number of indices = 2

Index name...... En Tp Nulls SM Fmt NC Field/Expression
SEASON Y I Yes S R N @ID[1,4]
Index entries Key values Min Recs Avg Recs Max Recs
 2140774 12 147286 178397.8333 219143

Index name...... En Tp Nulls SM Fmt NC Field/Expression
ME.NO Y I Yes S L N @ID[7,5]
Index entries Key values Min Recs Avg Recs Max Recs
 2140774 108 1 19821.9815 105665

After restarting the system, the test is run again:

INDEX.TEST
22:05:24 4 FEB 2010
7697 record(s) selected to list 0
Cleared numbered select list 0
22:06:10 4 FEB 2010

57

INDEX.TEST
22:06:26 4 FEB 2010
7697 record(s) selected to list 0
Cleared numbered select list 0
22:06:30 4 FEB 2010

This time, the first selection took 46s, while the second selection took just 4s. Subsequent restarts
confirmed this pattern.

In practice, selection times will be between these two values – depending on how frequently the
PRODUCT-DATA file is used. The more frequently it is used, the greater the probability that the index will
be in memory and the shorter the selection times.

SDQuery will automatically use any indices that are available. You can also utilise the indices from
SDBasic (see the online help for more information on this).

Summary

This chapter has covered a wide range of topics. You should understand by now:

➢ SD uses two types of files – dynamic hashed files and directory files

➢ the basic principles of hashed files

➢ what makes the dynamic files used by SD different from static hashed files used by traditional
multi-value databases

➢ how to analyse the dynamic hashed files

➢ how configure the dynamic hashed files for improved performance

➢ the way that SD stores data on disk

➢ the different types of VOC entry relating to files, how to create them manually, and when to use
each type

➢ how to create alternate key indices on a file.

SDQuery
SDQuery is an ad-hoc reporting language that uses the definitions stored in the dictionary files to report
on the data. The language contains elements for:

➢ data selection

➢ data sorting

➢ data grouping

➢ carrying out summary operations (totals, averages, percentages)

58

➢ formatting of data on output

➢ generating headers and footers on each page of output

➢ panning and scrolling of output when viewed on a monitor

➢ redirection of output to printers, text files, or to delimited files

➢ printer formatting (PCL printers only)

Most of these elements are optional. Therefore, you can start with a simple statement and then
gradually add to it as you learn more of the language. This makes SDQuery relatively simple to learn
and use.

SDQuery is intimately associated with SD dictionaries. Therefore, you can’t really learn SDQuery
without gaining a good understanding of what dictionary items do and how they are constructed.

This section aims to work through the key elements of SDQuery while introducing dictionaries to you.
By the end of the section, you should be able to write comprehensive SDQuery statements and write
dictionary items to use with those SDQuery statements.

Anatomy of a SDQuery Statement

General syntax

SDQuery statements always follow a general syntactical form. This is:

verb {DICT} filename {USING {DICT} filename} {selection.clause } {sort.clause}
{display.clause} {record.id...} {FROM select.list.no} {TO select.list.no}

Given that most of the elements are optional, the simplest form of a SDQuery statement is simply:

verb filename

You have already used some of these commands, such as:

SORT VOC

SORT XRATES

SORT DICT XRATES

The most common verbs are LIST and SORT. Despite the difference in name, both verbs will sort the data.
However, the LIST verb will only do this when a sort clause is included in the statement, while the SORT
verb will always sort the data. The key difference is that the SORT verb appends a final sort by the item-
id. Therefore, the command:

SORT INVOICES BY INV.DATE

is equivalent to:

LIST INVOICES BY INV.DATE BY @ID

59

In most of this section, we will only use the SORT verb. Some other verbs will be introduced later in the
section (notably SELECT, SSELECT, and SEARCH), but for others you should refer to the SD documentation.
These verbs are also listed in the Quick Reference at the back of this book.

Selection clause

As its name implies, the selection clause restricts the set of items to be reported on to those matching
one or more criteria.

The general format of the selection clause is:

WITH {EVERY} condition {AND | OR condition}

where:

condition is: field operator value

or: field1 operator field2

and operator is one of the terms in the following table:

Operator Synonym Synonym Synonym Synonym
EQ = EQUAL
NE # NOT <> ><
LT < LESS BEFORE
LE <= =<
GT > GREATER AFTER
GE >= =>
LIKE MATCHES MATCHING
UNLIKE NOT.MATCHING
SAID SPOKEN ~
NO
BETWEEN

Note that some operators have multiple synonyms. SD does not care which synonym you use – it offers
you a choice for your convenience.

Creating a dictionary item for use in selecting data

Say we want to display the exchange rates for the year 2018. We could write a SDQuery statement like:

SORT XRATES WITH YEAR EQ 2018

Traditionally, multi-value databases have required that the comparison value in the expression be
enclosed in quotes. So, in other databases, we would need to write:

SORT XRATES WITH YEAR EQ “2018”

SD makes these quotes optional. You can choose to include them or omit as you please. But if you are
going to use one of the other multi-value databases, it would be good practice to quote your comparison
values.

Running this commad, SD responds with:

YEAR is not a field name or expression

60

This means that SD has not been able to find a definition of the word YEAR – it does not appear in either
the file dictionary or the VOC of the account. Therefore, we need to define the word YEAR so that
SDQuery understands what we mean.

To define YEAR, we use the MODIFY editor.

MODIFY DICT XRATES

Type in YEAR at the ID prompt, and define the item as follows:

ID Type Loc Conv Name Format S/M Assoc
YEAR I OCONV(@ID, ‘DY’) Year 4R S

Once you have filed the item, exit from the MODIFY editor and retry the SDQuery statement:

XRATES....
18266
18267
18268
18271
18272
18273
18274
18275
18278

Let’s add the date so that we can see if we really have 2018 information:

SORT XRATES WITH YEAR EQ "2018" DATE
XRATES.... Date.......
18266 03 JAN 2018
18267 04 JAN 2018
18268 05 JAN 2018
18271 08 JAN 2018
18272 09 JAN 2018
18273 10 JAN 2018
18274 11 JAN 2018
18275 12 JAN 2018
18278 15 JAN 2018
18279 16 JAN 2018

That looks good. Let’s see how we did that:

In the ‘Type’ field, we entered ‘I’. ‘I’ stands for indirect, and it means that this is a calculated field. In
SD jargon, this type of dictionary item is known as an I-type.

In the ‘Loc’ field, we entered the expression used to calculate the year. This expression was:

OCONV(@ID, ‘DY’)

OCONV is a function from the SDBasic programming language. It is the output conversion function. We
have already come across conversions – those are the expressions that go into the CONV field of
dictionary items.

In this case, the expression says apply an output conversion of ‘DY’ to the @ID field. You will recall that a
‘D’ conversion is a generic data conversion. In fact, any conversion code starting with a ‘D’ is a date
conversion, and ‘DY’ means return the year of the passed (internal) date. We can see from the dates
displayed that all have a year of 2018.

If all we have done is apply an output conversion, why didn’t we do this by specifying a ‘DY’ conversion
in the CONV field? Well, let’s try that and see what happens.

Create a dictionary item YEARX as follows:

61

ID Type Loc Conv Name Format S/M Assoc
YEARX D 0 DY Year 4R S

Let’s see what output we get from it:

SORT XRATES DATE YEAR YEARX
XRATES.... Date....... Year YEAR
18266 03 JAN 2018 2018 2018
18267 04 JAN 2018 2018 2018
18268 05 JAN 2018 2018 2018
18271 08 JAN 2018 2018 2018
18272 09 JAN 2018 2018 2018
18273 10 JAN 2018 2018 2018
18274 11 JAN 2018 2018 2018
18275 12 JAN 2018 2018 2018

So, it displays the year correctly, just like our I-type item did. What about selecting data?

SORT XRATES WITH YEARX EQ “2018” DATE YEAR YEARX
0 record(s) listed

It didn’t select any data. Why not?

Let’s think about this. An output conversion in the CONV field is applied just before the data is
displayed. However, when we are selecting and sorting the data, we are doing so in its internal data
format – so it is still a date. Let’s check that:

SORT XRATES WITH YEARX GE "01 JAN 2018" DATE YEAR YEARX
XRATES.... Date....... Year YEAR
18266 03 JAN 2018 2018 2018
18267 04 JAN 2018 2018 2018
18268 05 JAN 2018 2018 2018
18271 08 JAN 2018 2018 2018
18272 09 JAN 2018 2018 2018
18273 10 JAN 2018 2018 2018
18274 11 JAN 2018 2018 2018
18275 12 JAN 2018 2018 2018
18278 15 JAN 2018 2018 2018

So, even though it is displaying a year value, its internal value is still an entire date. So we can select on
it as a date, but not as a year. Let’s delete that dictionary item:

DELETE DICT XRATES YEARX
1 record(s) deleted

Let’s add some other date type dictionary items:

MODIFY DICT XRATES

ID Type Loc Conv Name Format S/M Assoc
MTHNO I OCONV(@ID, ‘DM’) Month 2R S
MTH I OCONV(@ID, ‘DMA[3]’) MCT Mth 3L S
MONTH I OCONV(@ID, ‘DMA’) MCT Month 10L S
DOM I OCONV(@ID, ‘DD’) Day 3R S
DOW I OCONV(@ID, ‘DW’) Day 3R S
DAY I OCONV(@ID, ‘DWA[3]’) MCT Day 3L S

What does all this mean? Well, lets start by seeing what output they generate:

sort xrates date mthno mth month dom dow day sample 5
XRATES.... Date....... Month Mth Month..... Day Day Day
18477 02 AUG 2018 08 Aug August 02 4 Thu
18502 27 AUG 2018 08 Aug August 27 1 Mon
18604 07 DEC 2018 12 Dec December 07 5 Fri
18890 19 SEP 2019 09 Sep September 19 4 Thu
19049 25 FEB 2020 02 Feb February 25 2 Tue

MTHNO returns the month number of the year. It does this by applying a ‘DM’ conversion to the @ID (date)
field.

62

MONTH returns the full name of the month, while MTH returns an abbreviated month name. In both cases,
the central bit of the conversion is ‘DMA’ where the ‘A’ means return an alphabetic value. The MTH
dictionary item then returns only 3 characters of this value.

DOM returns the day of month by applying a ‘DD’ conversion to the date, while DOW returns the day of
week by applying a ‘DW’ conversion. The DAY dictionary item returns the day name by using a ‘DWA’
conversion.

Note that the dictionary items that return alphabetic values have a further conversion in the CONV field.
This conversion is ‘MCT’ which capitalises the first letter of every word with the rest of each word in
lower case. In recent versions of SD, we could also have used ‘MCS’ which capitalises the first word of a
sentence, with the rest of the sentence in lower case.

Note that while these secondary conversions make the output look better than the default all-capitals
values, they make selection by these dictionary items more difficult.

Selection by month number:

sort xrates with mthno eq "5" date mthno mth month dom dow day sample 5
XRATES.... Date....... Month Mth Month..... Day Day Day
19126 12 MAY 2020 05 May May 12 2 Tue
19486 07 MAY 2021 05 May May 07 5 Fri
19490 11 MAY 2021 05 May May 11 2 Tue
19498 19 MAY 2021 05 May May 19 3 Wed
20583 08 MAY 2024 05 May May 08 3 Wed

Sample of 5 record(s) listed

Note that we didn’t specify the leading zero on the month number. This could fail in some other multi-
value implementations as they could require that the leading zero be present in the comparison value.

Selection by abbreviated month:

SORT XRATES WITH MTH EQ "May" DATE MTHNO MTH MONTH DOM DOW DAY SAMPLE 5
Sample of 0 record(s) listed

This will not return anything regardless of the capitalisation of “May”. If we take the ‘MCT’ conversion
out of the dictionary item, then the following statement works:

SORT XRATES WITH MTH EQ "MAY" DATE MTHNO MTH MONTH DOM DOW DAY SAMPLE 5
XRATES.... Date....... Month Mth Month..... Day Day Day
19126 12 MAY 2020 05 MAY May 12 2 Tue
19486 07 MAY 2021 05 MAY May 07 5 Fri
19490 11 MAY 2021 05 MAY May 11 2 Tue
19498 19 MAY 2021 05 MAY May 19 3 Wed
20583 08 MAY 2024 05 MAY May 08 3 Wed

With the ‘MCT’ conversion in place, we need to do a case-insensitive comparison:

63

SORT XRATES WITH MTH EQ NO.CASE "MAY" DATE MTHNO MTH MONTH DOM DOW DAY SAMPLE 5
XRATES.... Date....... Month Mth Month..... Day Day Day
19126 12 MAY 2020 05 May May 12 2 Tue
19486 07 MAY 2021 05 May May 07 5 Fri
19490 11 MAY 2021 05 May May 11 2 Tue
19498 19 MAY 2021 05 May May 19 3 Wed
20583 08 MAY 2024 05 May May 08 3 Wed

Sample of 5 record(s) listed

In practice, we probably aren’t going to make a selection on a literal month name – we would tend to
use the month number for that. But we might want to select on someone’s name, and we need to be
aware of the impact of conversion codes on the selection process.

A full list of conversion codes can be found in the SD documentation, but some alternatives and their
output is shown below for date value 16607 (Wednesday, 19 June 2013).

Code Output
‘D’ 19 JUN 2013
‘D2’ 19 JUN 13
‘D2/’ 19/06/13 (or 06/19/13)
‘D4/’ 19/06/2013 (or 06/19/2013)
‘D-YMD’ 2013-06-19
‘DW’ 3
‘DWA’ WEDNESDAY
‘DWAL’ Wednesday
‘DMA’ JUNE
‘DMAL’ June
‘DMAL[3]’ Jun

You will realise by now that the text you enter in the ‘Name’ field of the dictionary is what appears in
the column heading. Similarly, what you enter in the format field defines the width of the column –
with some exceptions.

The MTHNO dictionary item specifies a format of 2R which means right-justify the field with a field
width of 2 characters. However, the actual output displays the column heading fully, meaning that the
actual field width is 5 characters wide.

Both the format codes and the conversion codes contain many options allowing powerful formatting of
output from dictionaries. We’ll cover some more of these later, but you need to read the manuals and
help files to gain a full picture of their capabilities.

Multiple selection criteria

Often, we need to select on more than one criteria. For example, we want to display all dates in 2018
when the exchange rate has been below 65 US cents to the NZ dollar.

sort xrates with year eq "2018" and with usd lt "0.6500" date usd
XRATES.... Date....... us dollar
18540 04 OCT 2018 0.6498
18541 05 OCT 2018 0.6481
18544 08 OCT 2018 0.6427
18545 09 OCT 2018 0.6449
18546 10 OCT 2018 0.6491
18547 11 OCT 2018 0.6467

6 record(s) listed

Note that SD recognises the statement even though everything is in lower case.

64

In this statement, the WITH keyword is specified a second time after the AND. In SD, this is not strictly
necessary – but other multi-value environments require the second WITH to be included.

It is generally a good idea to make your statements as compatible with other multi-value environments
as possible. This is because you might have to work on one of these other systems, and if you aren’t
familiar with their syntax, you will find their query language to be quite restrictive.

In practical usage, you can have as many selection criteria as you like. However, if you have a lot of
selection criteria, you may find it better to use multiple SELECT statements (see Section Multiple
selection criteria) for selecting the data, followed by LIST or SORT statements to display the data.

There is another form of selection, where two criteria are applied to the same element. For example,
display dates where the exchange rate is between 65 and 651 US cents:

SORT XRATES WITH USD GE "0.65" AND LE "0.651" DATE USD
XRATES.... Date....... us dollar
18551 15 OCT 2018 0.6506
18770 22 MAY 2019 0.6505
18796 17 JUN 2019 0.6505
18845 05 AUG 2019 0.6505
18965 03 DEC 2019 0.6500
19843 29 APR 2022 0.6504
19871 27 MAY 2022 0.6505
20116 27 JAN 2023 0.6506
20119 30 JAN 2023 0.6500

9 record(s) listed

We could also have used the BETWEEN operator to achieve the same selection:

SORT XRATES WITH USD BETWEEN "0.65" "0.651" DATE USD

The BETWEEN operator returns true if the field is greater than or equal to the first value specified, and
less than or equal to the second value specified.

Comparison against a database value

The selection criteria used so far have compared a value in the database with a value we specify in the
selection clause. There is another type of selection where we want to compare a database value against
another database value.

To demonstrate this, we’ll use the interest rates file that you imported earlier. Now, we normally expect
longer term interest rates to be higher than short term interest rates, but this isn’t always the case. We
can use the query language and the selection criteria to find those dates where short term rates (30
days) are higher than longer term (90 days) rates.

65

SORT IRATES WITH DAYS30 GT DAYS90 DATE DAYS30 DAYS90
IRATES.... Date....... 30 Day Bank Bill 90 Day Bank Bill
18715 28 MAR 2019 1.86 1.83
18716 29 MAR 2019 1.86 1.85
18719 01 APR 2019 1.86 1.84
18720 02 APR 2019 1.86 1.85
18721 03 APR 2019 1.87 1.81
…

Direct identification of items

There is another way to select items if you know their item ID. This corresponds to the {record.id ...}
element shown in the general syntax of a SDQuery statement shown in section Anatomy of a SDQuery
Statement.

Using the first few item-ids from the above statement, we could write:

SORT IRATES '18715''18716''18719' DATE DAYS90
IRATES.... Date....... 90 Day Bank Bill
18715 28 MAR 2019 1.83
18716 29 MAR 2019 1.85
18719 01 APR 2019 1.84

3 record(s) listed

While this seems fairly awkward, there are situations where you know the item-ids that you want, and
this becomes an easy method to extract the desired records.

Note (once again) that while the item-ids above are shown to be single-quoted, SD does not require this
– but other multi-value databases do.

Note the following points about selection using a list of item-id’s:

➢ long lists of item-id’s will be cumbersome

➢ the item-id will need to comprise “meaningful” data if you are to have any chance of knowing
it.

Sort clause

So far, we have been using the SORT verb, but only sorting the records into the default order. There are
many cases where we need to sort the data into some other order. For example, we want to know when
we had the lowest exchange rate against the US dollar:

66

SORT XRATES BY USD DATE USD
XRATES.... Date....... us dollar
20014 17 OCT 2022 0.5558
20833 13 JAN 2025 0.5566
20008 11 OCT 2022 0.5580
20009 12 OCT 2022 0.5583
20830 10 JAN 2025 0.5593
20840 20 JAN 2025 0.5595
20834 14 JAN 2025 0.5598

Of course, this dataset is limited to dates later than the start of 2018. If you load some of the historic
data series available from the RBNZ website, you will find that the NZ Dollar reached a low of 0.3922
against the US Dollar in November 2000.

This listing shows the data sorted into ascending order. What about descending order? This uses a
BY.DSND (note the period in the middle of the word) modifier instead of BY. SD will also accept BY-DSND
for compatibility with other multi-value environments.

SORT XRATES BY.DSND USD DATE USD
XRATES.... Date....... us dollar
19415 25 FEB 2021 0.7435
18313 19 FEB 2018 0.7397
18310 16 FEB 2018 0.7393
18296 02 FEB 2018 0.7388
18309 15 FEB 2018 0.7376

Multiple sort values can be specified, and ascending and descending sorts freely mixed. Sorting will
occur in the order specified within the statement. Consider:

SORT XRATES WITH USD LT "0.7349" BY.DSND USD BY DATE DATE USD
XRATES.... Date....... us dollar
18292 29 JAN 2018 0.7347
18294 31 JAN 2018 0.7347
19414 24 FEB 2021 0.7343
18315 21 FEB 2018 0.7341
18371 18 APR 2018 0.7335
18286 23 JAN 2018 0.7334
18336 14 MAR 2018 0.7334

This sorts the selected data into descending exchange rate order and then applies a secondary ascending
sort to the date. This means that where there a multiple entries for a given exchange rate, these will be
sorted into ascending date order. So, the two entries for 0.7347 are shown with the Jan 29 entry first,
followed by Jan 31.

Try changing the BY.DSND sort into an ascending sort to make sure that the data output is sorted correctly.

Display clause

The display clause tells SDQuery what to display and consists of a list of dictionary items along with
optional processing and formatting codes. We have used simple display clauses throughout this section
to see the results of the selection and sort clauses.

To see the dictionary items that are available for any given file, simply type:

SORT DICT filename

67

SORT DICT XRATES
@ID......... TYPE LOC........... CONV.. NAME........ FORMAT S/M ASSOC...
DATE D 0 D Date 12R S
@ID D 0 XRATES 10L S
YEARX D 0 DY Year 4R S
USD D 1 MR44, US Dollar 7R S
GBP D 2 MR44, UK Pound 7R S
AUD D 3 MR44, Aus Dollar 7R S
JPY D 4 MR22, Jap Yen 7R S
EUR D 5 MR44, Euro 7R S
CAD D 6 MR44, Canada Dolla 7R S
 r
KRW D 7 MR22, SKorea Won 7R S
CNY D 8 MR44, Chinese Yuan 7R S
MYR D 9 MR44, Malay Ringgi 7R S
 t
HKD D 10 MR44, HK Dollar 7R S
IDR D 11 MR22, Indonesia Ru 9R S
 piah
THB D 12 MR44, Thai Baht 8R S
SGD D 13 MR44, Singapore Do 7R S
 llar
TWD D 14 MR44, Taiwan Dolla 7R S
 r
DOM I OCONV(@ID, Day 3R S
 'DD')
MTHNO I OCONV(@ID, Month 2R S
 'DM')
MONTH I OCONV(@ID, MCT Month 10L S
 'DMA')
MTH I OCONV(@ID, MCT Mth 3L S
 'DMA[3]')
DOW I OCONV(@ID, Day 3R S
 'DW')
DAY I OCONV(@ID, MCT Day 3L S
 'DWA[3]')
YEAR I OCONV(@ID, Year 4R S
 'DY')

24 record(s) listed

At its simplest, a display clause is simply a list of dictionary items for the file:

SORT XRATES DATE USD GBP AUD
XRATES.... Date....... us dollar uk pound aus dollar
18266 03 JAN 2018 0.7095 0.5219 0.9066
18267 04 JAN 2018 0.7086 0.5245 0.9057
18268 05 JAN 2018 0.7154 0.5275 0.9106
18271 08 JAN 2018 0.7171 0.5283 0.9119

In this example, everything after the word XRATES makes up the display clause.

Modifiers

Does the output of the ID annoy you? We can suppress the display of the item ID by using the keyword:
ID.SUP or ID-SUPP

You will note that SD often has two very similar words which do the same thing. The native dialect
used by SD uses periods in these words, but words with hyphens are supported for compatibility with
other multi-value environments.

SORT XRATES DATE USD GBP AUD ID.SUP
Date....... us dollar uk pound aus dollar
03 JAN 2018 0.7095 0.5219 0.9066
04 JAN 2018 0.7086 0.5245 0.9057
05 JAN 2018 0.7154 0.5275 0.9106
08 JAN 2018 0.7171 0.5283 0.9119

That looks a better presentation.

68

SD has a range of keywords that modify the way the output is displayed. Some of these are listed
below:

Keyword Synonyms Purpose
COL.HDR.SUPP COL.HDR.SUP Suppresses page and column headings

COL-HDR-SUPP
COL-HDR-SUP

COL.SUP Suppresses column headings
COUNT.SUP Suppresses the count of records selected
DBL.SPC DBL-SPC Double-spaces the output
DET.SUP DET-SUPP Suppresses detail lines in reports so that only totals

are displayed
HDR.SUP HDR-SUPP Suppresses the default page heading

SUPP
ID.ONLY ONLY Ignore the display clause and only list the ID
ID.SUP ID-SUPP Suppresses the display of the ID
LPTR Send output to the printer
NEW.PAGE Forces every record to display on a new page

You could try adding these to your queries to see what happens – but sometimes, they are best used in
specific circumstances. On our reports so far, DET.SUP will suppress all the output lines, but will be
useful with more advanced reports. Using LPTR may not work well until we define a printer.

Grouping records

Often, we want to display information over a period of time, but be able to break that report into blocks
of information. Therefore, each year, product, or customer will be separated from other years, products,
or customers.

This grouping is often (but not always) accompanied by a summary of information relating to that
group – such as the total of sales for a given year or customer. This section will cover how to group
information, while the next section will cover how to summarise the information.

Grouping data involves two steps – sorting the data so that related items appear together, and then
placing a break in the output to visually group the items. Sorting has already been covered, so we the
new concept is breaking the data into groups.

The keyword that SD uses to break the data into groups is BREAK.ON (or BREAK-ON), and has the following
general format:

BREAK.ON { “options” } dict-item

A simple statement breaking the exchange rate data into groups would be:

69

SORT XRATES BREAK.ON YEAR BREAK.ON MONTH DATE USD ID.SUP
Year Month..... Date....... us dollar
2018 January 03 JAN 2018 0.7095
2018 January 04 JAN 2018 0.7086
2018 January 05 JAN 2018 0.7154
etc
2018 January 25 JAN 2018 0.7351
2018 January 26 JAN 2018 0.7321
2018 January 29 JAN 2018 0.7347
2018 January 30 JAN 2018 0.7323
2018 January 31 JAN 2018 0.7347
 **
2018

2018 February 01 FEB 2018 0.7368
2018 February 02 FEB 2018 0.7388
2018 February 05 FEB 2018 0.7301
2018 February 07 FEB 2018 0.7333
2018 February 08 FEB 2018 0.7212

Most of the January entries have been removed to reduce the size of the listing.

At the end of each group, two asterisks are placed in the column of the field causing the break. The
command said to break on year and month. We can see the asterisks in the month column, and if we
followed the listing to the point where the year changes, we would see the asterisks appear there too.

SORT XRATES BREAK.ON YEAR BREAK.ON MONTH DATE USD ID.SUP
Year Month..... Date........ US Dollar
etc
2018 December 27 DEC 2018 0.6732
2018 December 28 DEC 2018 0.6711
2018 December 31 DEC 2018 0.6713
 **
2018
**

2019 January 03 JAN 2019 0.6620
2019 January 04 JAN 2019 0.6682
2019 January 07 JAN 2019 0.6733

What say we don’t want the asterisks to appear. There are a couple of ways we can get rid of them.
Consider:

BREAK.ON MONTH " "

BREAK.ON MONTH "'L'"

The first method shown above simply replaces the asterisks with the text between the quotation marks.
In this case, that text is a single space, so nothing is displayed.

The second method suppresses the break line. This has the effect of moving the groups of data closer
together:

SORT XRATES BREAK.ON "'L'" YEAR BREAK.ON "'L'" MONTH DATE USD ID.SUP
Year Month..... Date........ US Dollar
etc
2018 January 26 JAN 2018 0.7321
2018 January 29 JAN 2018 0.7347
2018 January 30 JAN 2018 0.7323
2018 January 31 JAN 2018 0.7347

2018 February 01 FEB 2018 0.7368
2018 February 02 FEB 2018 0.7388
2018 February 05 FEB 2018 0.7301
2018 February 07 FEB 2018 0.7333

You can also use the ‘O’ option to only show the break value when it first occurs. This is another way of
visually separating the groups:

70

SORT XRATES BREAK.ON "'L'" YEAR BREAK.ON "'LO'" MONTH DOM USD ID.SUP
Year Month..... Day us dollar
2018 January 03 0.7095
2018 04 0.7086
2018 05 0.7154
etc
2018 25 0.7351
2018 26 0.732
2018 29 0.7347
2018 30 0.7323
2018 31 0.7347

2018 February 01 0.7368
2018 02 0.7388
2018 05 0.7301
2018 07 0.7333

We didn’t specify an ‘O’ option for the year break because too much data would pass between the each
break, and we would be left wondering which year we were looking at.

We could further add a ‘P’ option to the break. This would cause a page break to occur whenever the
break-point was reached. In other words, once all the January data was displayed, it would pause until
you pressed enter before displaying February on a fresh screen.

The introduction to this section noted that the first thing we had to was sort the data. But none of these
commands actually specifies a sort criteria – although they use the SORT verb. The reason that no sort
criteria is specified is that sorting by the ID (which is what the SORT verb does after all other sort criteria
have been implemented) puts the records in ascending date order – which is what we want. Therefore,
no explicit sort order needs to be specified.

The BREAK.ON clause contains a number of other useful options, but we need to explore these in
combination with the creation of summary data. So, we’ll look at that now.

Generating summary information

Typical summary information that is generated from grouped data includes totals, averages, and
percentages. SD provides keywords to calculate these summaries as well as a few others. The table
below shows the available summary keywords, and their synonyms:

Keyword Synonyms Purpose
AVERAGE AVG Averages the specified field
CUMULATIVE Reports the cumulative value of the field
ENUMERATE ENUM Counts the values in the field
MAX Reports the maximum value of the field in the group
MIN Reports the minimum value of the field in the group
PERCENTAGE PERCENT Reports the field value as a percentage of the field total

PCT
%

TOTAL Reports the total of the field

The general format used by these keywords is as follows:

keyword dict-item { field qualifiers }

The field qualifiers have a range of functions. Some of these modify the way the keywords operate (e.g.
NO.NULLS tells the AVERAGE keyword to ignore null items), while others specify how to display the results
(e.g. CONV, FMT, COL.HDG).

71

MIN, MAX, AVG

A simple set of summary data from the exchange rate file would be:

SORT XRATES BREAK.ON "'UV'" YEAR BREAK.ON "'UV'" MONTH DOM MIN USD AVG USD MAX USD ID.SUP
Year Month..... Day us dollar us dollar us dollar
2018 January 03 0.7095 0.7095 0.7095
2018 January 04 0.7086 0.7086 0.7086
etc
2018 January 30 0.7323 0.7323 0.7323
2018 January 31 0.7347 0.7347 0.7347
2018 January 0.7086 0.7255 0.7356

2018 February 01 0.7368 0.7368 0.7368
2018 February 02 0.7388 0.7388 0.7388
2018 February 05 0.7301 0.7301 0.7301

This listing tells us that the average exchange rate against the US dollar in January of 2018 was
approximately 72.6 US cents to the NZ dollar, with a minimum value during the month of about 70.9
US cents and a maximum of about 73.6 US cents.

Note that the BREAK-ON clause has options of ‘UV’. The ‘V’ tells SD to display the value of the break field
in the break line, while the ‘U’ means display a row of underline characters between the group and the
break line.

Note also that these option codes are contained within single quote marks inside a pair of double quote
marks. This is explained by the general format of these BREAK.ON options:

"text 'codes'"

The text is used to replace the asterisks on the break line (covered in the previous section), while the
codes provide other instructions to SD. The single quote marks are necessary to distinguish the codes
from the text. If the text itself contains a single quote mark, then this should be entered as two single
quote marks.

Suppressing detail lines

So far, all queries have used displayed all of the selected records. However, we frequently want to
display only summary information without showing the individual record detail. Once again, SD has
another keyword to enable this:

DET.SUP or DET-SUPP

For example, to simply show the monthly summary data for the same query as shown above, we would
use:

72

SORT XRATES WITH YEAR EQ "2018" BREAK.ON MONTH DOM MIN USD AVG USD MAX USD DET.SUP
Month..... Day us dollar us dollar us dollar
January 0.7086 0.7255 0.7356
February 0.7212 0.7312 0.7397
March 0.7184 0.7257 0.7334
April 0.7064 0.7258 0.7373
May 0.6863 0.6953 0.7051
June 0.6741 0.6941 0.7042
July 0.6703 0.6788 0.6851
August 0.6564 0.6671 0.6805
September 0.6511 0.6595 0.6683
October 0.6427 0.6530 0.6621
November 0.6540 0.6766 0.6866
December 0.6711 0.6829 0.6943
 ========= ========= =========
 0.6427 0.6921 0.7397

251 record(s) listed

Note that we’ve dropped the ID.SUP from the above statement, because it is implied by the use of DET.SUP.
You can leave it there if you want – it makes no difference.

There is another curiosity with the above listing. The DOM field has generated an entry on the break line
even though it does not do this in the detail listing. This is actually the last ‘day of month’ value before
the break.

Formatting column headings

Now, while this shows the summarised data as we want, it is pretty confusing to have each column
headed “US Dollar”. We really need to change the headings of the columns to make it clear which
column represents what data. This is where we use some of the field qualifiers referred to above:

SORT XRATES WITH YEAR EQ "2018" BREAK.ON MONTH DOM MIN USD COL.HDG "Min USD" AVG USD COL.HDG "Avg
USD" MAX U
Month..... Day Min USD Avg USD Max USD
January 0.7086 0.7255 0.7356
February 0.7212 0.7312 0.7397
March 0.7184 0.7257 0.7334
April 0.7064 0.7258 0.7373
May 0.6863 0.6953 0.7051
June 0.6741 0.6941 0.7042
July 0.6703 0.6788 0.6851
August 0.6564 0.6671 0.6805
September 0.6511 0.6595 0.6683
October 0.6427 0.6530 0.6621
November 0.6540 0.6766 0.6866
December 0.6711 0.6829 0.6943
 ======= ======= =======
 0.6427 0.6921 0.7397

251 record(s) listed

This uses the COL.HDG keyword to supply a more appropriate column heading for the maximum,
minimum and average exchange rates. The format of the COL.HDG keyword is as follows:

field COL.HDG “text”

where field is the dictionary item13 for which we wish to apply the new column heading, and text is the
new column heading. The text must be enclosed in either single or double quotes. The text may also
contain some formatting options.

13 COL.HDG can also apply to a calculated field that is specified entirely in the SDQuery statement rather than in a
dictionary item. Creation of this type of field is covered later.

73

While SD allows a choice of either single or double quotes, a standard convention would be to use
double quotes (as shown above), and to use single quotes to delimit options within the text.

Three formatting codes are allowed for COL.HDG. These are:

Code Purpose
‘L’ Breaks the text into multiple lines
‘R’ Right-aligns the column heading
‘X’ Suppresses the dot fillers normally inserted into column headings

To illustrate the use of the these options, consider:

SORT XRATES WITH YEAR EQ "2018" BREAK.ON MONTH MIN USD COL.HDG "'RX'Min'L'USD" AVG USD COL.HDG
"'R'Avg'L'USD"
Month..... Min Avg Max....
 USD USD USD....
January 0.7086 0.7255 0.7356
February 0.7212 0.7312 0.7397
March 0.7184 0.7257 0.7334
April 0.7064 0.7258 0.7373
May 0.6863 0.6953 0.7051
June 0.6741 0.6941 0.7042
July 0.6703 0.6788 0.6851
August 0.6564 0.6671 0.6805
September 0.6511 0.6595 0.6683
October 0.6427 0.6530 0.6621
November 0.6540 0.6766 0.6866
December 0.6711 0.6829 0.6943
 ======= ======= =======
 0.6427 0.6921 0.7397

251 record(s) listed

This uses the ‘L’ option to split the column headings into two lines. It then uses the ‘R’ and ‘X’ options on
the first column to right-justify the heading and suppress the dot fillers. The second column only uses
‘R’ to right-justify, while the final column doesn’t use either of these options.

This demonstrates that column headings can be broken into multiple lines. Of course, it would be
inconvenient if we always had to use a COL.HDG keyword to do this – there must be a way to do this
directly in the dictionary. And of course, there is:

Consider:

SORT IRATES WITH YEAR EQ "2018" BREAK.ON MONTH MIN OVERNIGHT AVG OVERNIGHT MAX OVERNIGHT ID.SUP
DET.SUP
YEAR is not a field name or expression

It seems that we haven’t defined YEAR in the IRATES dictionary yet. And of course, there were a number
of other dictionary items we defined in XRATES that are not in IRATES. Now, because these dictionaries
work off the ID of each item, and because the ID’s used in the IRATES file are identical to those used in the
XRATES file, we can just copy these items from the XRATES dictionary to the IRATES dictionary.

COPY FROM DICT XRATES TO DICT IRATES YEAR MTHNO MONTH MTH DOM DOW DAY
7 record(s) copied.

The COPY command has a number of formats and options. See the documentation or online help for
details.

Now, let’s try again:

74

SORT IRATES WITH YEAR EQ "2018" BREAK.ON MONTH MIN OVERNIGHT AVG OVERNIGHT MAX OVERNIGHT ID.SUP
DET.SUP Page 1
Month..... Overnight Cash Rate Overnight Cash Rate Overnight Cash Rate
January 1.50 1.66 1.76
February 1.50 1.67 1.76
March 1.50 1.67 1.80
April 0.00 1.62 1.79
May 1.64 1.73 1.85
June 1.59 1.69 1.78
July 1.57 1.67 1.77
August 1.59 1.71 1.82
September 1.50 1.68 1.76
October 0.00 1.60 1.82
November 1.61 1.72 1.79
December 1.64 1.72 1.76
 =================== =================== ===================
 0.00 1.68 1.85

251 record(s) listed

Clearly, the column heading is much wider than the actual data. It would be much better if the heading
were split between the words “Overnight” and “Cash”.

Go back to the MODIFY editor, and display the OVERNIGHT dictionary item. We want to modify line 4 (the
NAME), so type in 4, and the heading will be displayed at the bottom of the screen. Use the arrow keys to
move the cursor to the space character, and delete it using the Delete key. Now, hold down the Ctrl key
and press Q. Release the Ctrl key. You will note the SD is prompting you with “Quote char” at the
bottom of the screen. Press V. You will now see another character appear where the space character used
to be. The actual character you see will depend on the character set in use by your computer, but a y
with two dots over the top is common (ÿ). Press enter, and your modified column heading will appear in
the main dictionary display. Type in FI to file the item, and enter to return to the colon prompt.

What have we done? We have inserted a Value Mark into the heading. This should act to split the
column heading into two lines.

SORT IRATES WITH YEAR EQ "2018" BREAK.ON MONTH MIN OVERNIGHT AVG OVERNIGHT MAX OVERNIGHT ID.SUP
DET.SUP
Month..... Overnight Overnight Overnight
 Cash Rate Cash Rate Cash Rate
January 1.50 1.66 1.76
February 1.50 1.67 1.76
March 1.50 1.67 1.80
April 0.00 1.62 1.79
May 1.64 1.73 1.85
June 1.59 1.69 1.78
July 1.57 1.67 1.77
August 1.59 1.71 1.82
September 1.50 1.68 1.76
October 0.00 1.60 1.82
November 1.61 1.72 1.79
December 1.64 1.72 1.76
 ========= ========= =========
 0.00 1.68 1.85

251 record(s) listed
:

Value marks are one of a number of system delimiters used by SD and multi-value databases in general.
Indeed the “value” in “Value Mark” is the origin of the term “multi-value”. Value marks delimit the
boundaries of each value of information in items (fields) so that we can store, retrieve, and manipulate
multi-valued items.

75

Clearly, most of the other items in the IRATES dictionary can have their column headings split into two
lines. Note that you can put more than one value mark in the heading to make 3 or 4 line headings, or
even more if you so wish.

Now – there is something wrong with the above listing. The minimum column is showing an average
of 0.00. This is due to null values found in IRATES. The default behavior is to treat null items as zero. If
we list the data for the overnight cash rate, we find that quite a number of days have no quoted value.
This is a situation where we should use the NO.NULLS modifier:

SORT IRATES WITH YEAR EQ "2018" BREAK.ON MONTH MIN OVERNIGHT NO.NULLS AVG OVERNIGHT NO.NULLS MAX
OVERNIGHT ID.SUP DET.SUP
Month..... Overnight Overnight Overnight
 Cash Rate Cash Rate Cash Rate
January 1.50 1.66 1.76
February 1.50 1.67 1.76
March 1.50 1.67 1.80
April 1.55 1.71 1.79
May 1.64 1.73 1.85
June 1.59 1.69 1.78
July 1.57 1.67 1.77
August 1.59 1.71 1.82
September 1.50 1.68 1.76
October 1.50 1.68 1.82
November 1.61 1.72 1.79
December 1.64 1.72 1.76
 ========= ========= =========
 1.50 1.69 1.85

251 record(s) listed

We have now applied the NO.NULLS keyword to both the MIN and the AVG columns, but haven’t bothered
with the MAX column. This is because the presence of a null has no effect on what value is returned for a
maximum. However, you can compare the two listings to see the other two columns clearly have been
affected.

You may think that perhaps we should always use NO.NULLS – but it really depends on the data that you
have, and what you are trying to measure. If you are trying to get the average income of a group, and
some of that group have no income, then their zero or null income should be included as part of the
average (or minimum) value.

Totaling data

Another keyword that is important in reporting summary information is TOTAL. We haven't used that yet
because interest and exchange rate data isn't good for totaling. However, we also loaded a file named
TEX.QCH that contains better data for totaling. Most of the dictionary items to do this have already been
created. You can view these by typing:

SORT DICT TEX.QCH

Let’s look at some of those dictionary items. The CTRY dictionary item looks like:

I
FIELD(@ID, ‘*’, 2)

Ctry
2L
S

Before we proceed further, it is useful to know that the @ID field of TEX.QCH has a structure of:

76

YYYYQ * CC * HH

where YYYYQ is the year and quarter; CC is a country identifier; and HH is an HS code. There are no
spaces between the elements.

The FIELD function extracts a field from a delimited string. In this case, we have specified that the
source string is the @ID field, the delimiter is an asterisk (‘*’), and we want the second field.

This expression could also have been written as:

OCONV(@ID, ‘G1*1’)

@ID[7,2]

@ID[‘*’, 2, 1]

The first of these is termed a “Group conversion” which is analogous to the FIELD function, but uses a
different syntax. The ‘G’ indicates a group conversion; the first ‘1’ means skip one field; the asterisk is
the delimiter character; and the final ‘1’ means return one field.

The second alternative is simply a string extraction. It says return two characters from the @ID, starting
at position 7. This relies on the components of the @ID being fixed in length, whereas the other versions
extract the second field delimited by asterisk characters.

The third expression14 looks like a string extraction because it uses the square brackets, but it is actually
a group extraction. This statement says extract 1 group from @ID, delimited by the asterisk character,
starting at group 2.

Which expression you use is up to you. But you need to be aware that there is more than one way to
achieve a given end, and that other people may use a different expression than you would.

The YYYYQ and HS dictionary items are very similar to CTRY – except that they extract a different part of
the @ID. The YEAR and QTR dictionaries take the field returned by YYYYQ and carry out substring
extractions to get the year and quarter numbers.

We’ll deal with the other dictionary items later.

Now, let’s look at total exports for a year, broken into country destinations:

SORT TEX.QCH WITH YEAR EQ "2012" BY CTRY BREAK.ON CTRY TOTAL FOB DET.SUP
Ctry FOB Value
AD 0
AE 579,039,997
AF 78,642
etc
ZA 244,036,303
ZM 88,493
ZR 0
ZW 1,763,241

 44,356,210,157

96824 record(s) listed

This query statement used the DET.SUP keyword to suppress the individual record detail, so that only the
country totals are displayed. If you look at the count of records in the report, you will realise that a lot
of records have been summarised in this report.

14 This syntax is not supported in the GPL version of SD.

77

If we take the DET.SUP keyword out of the statement, then we find that many records actually contain no
data:

SORT TEX.QCH WITH YEAR EQ "2012" BY CTRY BREAK.ON CTRY TOTAL FOB
TEX.QCH..... Ctry FOB Value
20121*AD*01 AD
20121*AD*02 AD
20121*AD*03 AD

We could exclude these records with:

SORT TEX.QCH WITH YEAR EQ "2012" AND WITH FOB GT "0" BY CTRY BREAK.ON CTRY TOTAL FOB DET.SUP
Ctry FOB Value
AE 579,039,997
AF 78,642
AG 726,777
etc
ZA 244,036,303
ZM 88,493
ZW 1,763,241

 44,356,210,157

17023 record(s) listed

There are two things to note here. Firstly, the record count has shrunk from over 968,000 down to just
over 17,000 – so we’ve excluded a lot of empty records. The second thing to note is that because we’ve
excluded those records, not all countries appear in the listing. For example, country ‘AD’ (Andorra) is
shown in the first listing but not the second. This means that New Zealand didn’t export anything to
Andorra during 2012.

This raises an important issue regarding database design. If we want to display information about an
entity (country), then we need to record that data even when that data is empty. Or the absence of data
can be just as important as its presence.

If we only recorded actual exports in this database, we would not be able to produce a listing of exports
that included ALL countries. Someone who didn’t have knowledge of our database wouldn’t be sure
whether we didn’t export to that country in the period, or whether we simply hadn’t recorded the data.
So, there is value to data, even when the data is null.

In this database design, we store a lot of empty records. On the other hand, the user now has the choice
of displaying all countries in a report, or only those countries for which there is genuine data. We can
even answer the question “Which countries did New Zealand NOT export to in 2012?”

Change the entity to make the example more relevant to you. For example, in a hotel booking system,
we want to record the status of all rooms in the hotel – not just those rooms that have a booking.

Let’s show a bit more detail in this report:

78

SORT TEX.QCH WITH CTRY EQ "AU""GB""JP""DE""US" AND WITH YEAR EQ "2012" BY CTRY BY HS BREAK.ON CTRY
BREAK.ON HS TOTAL FOB DET.SUP
Ctry HS Code FOB Value
 01 78,985,296
 02 65,252,009
 03 230,202,508
etc
 98 104,033,980
 99 0
AU ---------------
 9,159,794,657
 01 0
 02 343,692,327
etc

The report now shows exports for each country broken into major categories according to the
Harmonised System (HS) for export classification. The above listing shows that country ‘AU’
(Australia) took $9,159m of exports during 2012, of which $230m was fish (HS code 03).

Page breaks

In the above listing, you may want greater separation for each country. We can do this by inserting a
page break at each country break by using the ‘P’ option in the break command:

SORT TEX.QCH WITH CTRY EQ "AU""GB""JP""DE""US" AND WITH YEAR EQ "2012" BY CTRY BY HS BREAK.ON
"'P'" CTRY BREAK.ON HS TOTAL FOB ID.SUP DET.SUP
Ctry HS Code FOB Value
 01 78,985,296
 02 65,252,009
 03 230,202,508
etc
 98 104,033,980
 99 0
AU ---------------
 9,159,794,657

The next page would show the data for Germany (country ‘DE’), while the one after that will show the
UK data (country ‘GB’), and so on.

One problem with these listings is that the country information is not being displayed until the break
line. That is several screens of information before you find which country you are displaying.

One solution to this is to include the country identifier with the HS chapter identifier to create a
compound attribute. We’ll use an I-type dictionary named CTRY.HS to do this with an expression of:

CTRY:’ ‘:HS

This concatenates the CTRY and HS dictionaries, with a space character between them. The format code
becomes ‘5L’ to accommodate the width of the combined item. Now:

SORT TEX.QCH WITH CTRY EQ "AU""GB""JP""DE""US" AND WITH YEAR EQ "2012" BY CTRY BY HS BREAK.ON
"'P'" CTRY BREAK.ON CTRY.HS TOTAL FOB DET.SUP
Ctry Ctry HS FOB Value
 AU 01 78,985,296
 AU 02 65,252,009
 AU 03 230,202,508
etc
 AU 98 104,033,980
 AU 99 0
AU ---------------
 9,159,794,657

Now, we may decide that we don’t want the main country column displaying, but we still want to break
on that value. We use the BREAK.SUP keyword for this:

79

SORT TEX.QCH WITH CTRY EQ "AU""GB""JP""DE""US" AND WITH YEAR EQ "2012" BY CTRY BY HS BREAK.SUP
"'P'" CTRY BREAK.ON CTRY.HS TOTAL FOB DET.SUP
Ctry HS FOB Value
AU 01 78,985,296
AU 02 65,252,009
AU 03 230,202,508
etc
AU 98 104,033,980
AU 99 0

 9,159,794,657

Grand totals

SD automatically creates a grand total line for your query when you use the TOTAL, AVG, ENUM, MAX, MIN,
or PCT keywords. This consists of a row of double underlines followed by the summary value.

SORT TEX.QCH WITH YEAR EQ "2009""2010""2011""2012" BREAK.ON "'V'" YEAR TOTAL FOB ID.SUP DET.SUP
Year FOB Value
2009 37,776,649,244
2010 41,769,862,081
2011 45,905,449,806
2012 44,356,210,157

 169,808,171,288

387296 record(s) listed

You can change the format of this grand total line by using the GRAND.TOTAL keyword. Options include
providing specific text for the grand total line, suppressing the grand total line completely, or printing it
on a separate page.

SORT TEX.QCH WITH YEAR EQ "2012" AND WITH HS EQ "02" AND WITH CTRY EQ "AU""CN""DE""GB""JP""US" BY
CTRY BREAK.ON CTRY TOTAL FOB GRAND.TOTAL "Meat" DET.SUP
Ctry FOB Value
AU 65,252,009
CN 411,719,261
DE 343,692,327
GB 589,510,001
JP 280,448,620
US 1,180,039,662
Meat ===============
 2,870,661,880

24 record(s) listed

In the above command, the text “Meat” is inserted into the grand total line by the GRAND.TOTAL keyword.
To suppress the grand total, use the ‘L’ option:

SORT TEX.QCH WITH YEAR EQ "2012" AND WITH HS EQ "02" AND WITH CTRY EQ "AU""CN""DE""GB""JP""US" BY
CTRY BREAK.ON CTRY TOTAL FOB GRAND.TOTAL "'L'" DET.SUP
Ctry FOB Value
AU 65,252,009
CN 411,719,261
DE 343,692,327
GB 589,510,001
JP 280,448,620
US 1,180,039,662

24 record(s) listed

Alternatively, you can use the NO.GRAND.TOTAL modifier:

SORT TEX.QCH WITH YEAR EQ "2012" AND WITH HS EQ "02" AND WITH CTRY EQ "AU""CN""DE""GB""JP""US" BY
CTRY BREAK.ON CTRY TOTAL FOB NO.GRAND.TOTAL DET.SUP

80

Scaling data

All our queries have so far reported FOB exports down to the last dollar. Usually, we don’t want or
need that level of detail. Typically, exports will be expressed in millions of dollars (and in larger
countries, perhaps billions of dollars). So, how do we do that?

We’ve already seen that conversions can be used to change the way that data is displayed. And that is
exactly what we want to do here. We want to change the way that the data is displayed without actually
changing it internally.

Our FOB dictionary item currently uses a conversion of MR,. This could also be written as MR0, or MR00,.
Essentially, this means to display the data with zero decimal places, and no scaling. What we want is to
display the data in millions of dollars, and to display this to one decimal place.

We can do this with a conversion code of MR16,. This means that we want to descale the value by six
decimal places, and display to one decimal place. We can put this in a CONV modifier to test it:

SORT TEX.QCH WITH HS EQ "02" AND WITH CTRY EQ "AU""CN""DE""GB""JP""US" AND WITH YEAR EQ "2012" BY
CTRY BREAK.ON CTRY TOTAL FOB CONV "MR16Z," COL.HDG "'RX'FOB $m" DET.SUP
Ctry FOB $m
AU 65.3
CN 411.7
DE 343.7
GB 589.5
JP 280.4
US 1180.0
 ===============
 2870.7

24 record(s) listed

This has also used a COL.HDG modifier to show that the values are now being expressed in millions of
dollars.

If you compare the above listing with those found on previous pages, you will find that both the
individual values and the grand total have been correctly expressed in millions rounded to one decimal
place.

As this is a common output format, we should put this into a dictionary item. Let’s call it FOB.M:

I
FOB
MR16,
'R'FOB $m
9R
S

SORT TEX.QCH WITH HS EQ "02" AND WITH CTRY EQ "AU""CN""DE""GB""JP""US" AND WITH YEAR EQ "2012" BY
CTRY BREAK.ON CTRY TOTAL FOB.M DET.SUP
AU 65.3
CN 411.7
DE 343.7
GB 589.5
JP 280.4
US 1,180.0
 =========
 2,870.7

24 record(s) listed

Note that this dictionary item has also been given an output width that is more appropriate to the size of
data that is appearing.

81

Page headings and footings

From the SDQuery elements introduced so far, you should be able to construct a basic report that
selects, sorts, groups, and summarises data. However, to make this look like a proper report, we need to
add page headings and footings. The keywords to do this in SD are HEADER and FOOTING, and have the
following format:

HEADING “text”

FOOTING “text”

where “text” contains the text to be displayed in the heading or footing, along with a number of
optional formatting codes. These formatting codes are enclosed in single quotes within the text string.

Some of the formatting codes are listed below:

Code Purpose
B Inserts the value of the data from the corresponding B code in a BREAK.ON option

string
C Centres the heading text
D Inserts the date
F Inserts the file name
G Inserts a gap to utilise the full width of the output device
L Inserts a new line
P Inserts the page number

A full list of formatting codes can be found in the SD documentation and on-line help.

For example:

TERM 65

SORT XRATES WITH YEAR EQ "2018" BREAK.ON MONTH AVG USD NO.NULLS AVG AUD NO.NULLS AVG GBP NO.NULLS
DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year: 2018'L'"

TERM 132

produces:

11 FEB 2025 Average Monthly Exchange Rates Page 1
 Year: 2018

Month..... us dollar aus dollar uk pound
January 0.7255 0.9123 0.5252
February 0.7312 0.9277 0.5228
March 0.7257 0.9343 0.5196
April 0.7258 0.9432 0.5150
May 0.6953 0.9239 0.5156
June 0.6941 0.9265 0.5225
July 0.6788 0.9168 0.5155
August 0.6671 0.9100 0.5178
September 0.6595 0.9160 0.5054
October 0.6530 0.9186 0.5017
November 0.6766 0.9342 0.5244
December 0.6829 0.9503 0.5394
 ========= ========== ========
 0.6921 0.9257 0.5185

251 record(s) listed

The first TERM statement adjusts the width of the output device (screen) to something appropriate for the
centring of the text. The second TERM statement returns the screen width to its previous value.

The HEADING statement specifies a 3 line heading. However, there is nothing in the third line, so this
simply spaces the heading from the body of the report.

82

The first line has 3 components – the date (specified by the ‘D’ option), a main heading, and a page
number (specified by the ‘P’ option). These are separated by ‘G’ options which force the heading to
occupy the total width of the output device (the screen), while the second element is centred by the ‘C’
option.

The second line only has one element which is centred by the ‘C’ option.

Let’s extend the above statement to place the year in the heading automatically from a BREAK.ON clause:

TERM 65

SORT XRATES WITH YEAR GE "2018" BREAK.ON "'B'" YEAR BREAK.ON MONTH AVG USD NO.NULLS AVG AUD
NO.NULLS AVG GBP NO.NULLS DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year:
'BL'"

TERM 132

This produces:

11 FEB 2025 Average Monthly Exchange Rates Page 1
 Year: 2018

Year Month..... us dollar aus dollar uk pound
2018 January 0.7255 0.9123 0.5252
2018 February 0.7312 0.9277 0.5228
2018 March 0.7257 0.9343 0.5196
2018 April 0.7258 0.9432 0.5150
2018 May 0.6953 0.9239 0.5156
2018 June 0.6941 0.9265 0.5225
2018 July 0.6788 0.9168 0.5155
2018 August 0.6671 0.9100 0.5178
2018 September 0.6595 0.9160 0.5054
2018 October 0.6530 0.9186 0.5017
2018 November 0.6766 0.9342 0.5244
2018 December 0.6829 0.9503 0.5394
2018 0.6921 0.9257 0.5185
 ========= ========== ========
 0.6921 0.9257 0.5185

251 record(s) listed

The key change in this statement is the inclusion of a ‘B’ option in the BREAK.SUP clause. This is matched
by another ‘B’ option in the HEADING clause. This puts the break value into the heading. Therefore, the
heading correctly identifies the year whose months are displayed in the report.

There is another case of an implied option being used here. We didn’t actually specify that there should
be a page break on a year change, but this option is implied by putting the break value into the heading.
Once again, other multi-value databases will probably require you to specify the ‘P’ option in the
BREAK.ON clause.

Footings are included in a similar fashion. For example the following footing could be added to the
above statement:

FOOTING "Source: Rush Flat Consulting’L’ Based on RBNZ data"

This would be output as:

Source: Rush Flat Consulting
 Based on RBNZ data

Note that the footing appears at the bottom of the output device (screen or printed page) rather than
immediately following the body of the report.

83

Printing and Report Styles

Printing

So far, we have found how to create a report and display it on the screen. That is good, but we often
want a printed copy of the report too. So, how do we send the report to the printer?

Well, the answer is simple – there is another keyword to send the report to the printer – but there are a
number of complexities associated with printing.

The LPTR keyword

To send a report to the printer, all we need to do is add the LPTR keyword to the SDQuery statement. The
full format of the keyword is:

LPTR {unit}

where unit is the print unit number. If unit is omitted, then print unit 0 is used.

The exact meaning of print units will be covered shortly. But first, let’s look at a SDQuery statement
that sends output to the printer:

SORT XRATES WITH YEAR GE "2018" BREAK.ON"'B'" YEAR BREAK.ON MONTH AVG USD NO.NULLS AVG AUD
NO.NULLS AVG GBP NO.NULLS DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year:
'BL'" LPTR

If you execute this statement, perhaps something will come out of the printer, or perhaps not. It
depends on how your print units are set, and what sort of printer you have.

Print units

SD uses logical print units to provide flexibility in report output. A logical print unit may direct output
to a printer, to a file, or both. Individual print units may be defined to allow printing to different
printers, and in different formats (portrait, landscape, different fonts, different page sizes).

Up to 256 print units – numbered 0 to 255 – can be defined for any session. It is unlikely that you will
need to define anywhere near this number of print units.

To take advantage of all of the printing features of SD, a PCL printer is required. If you have a GDI
printer, features such as control of page orientation and print pitch are not available – but are still
available to you if you define a print unit as PCL and print through a PCL to Windows print driver
(such as Anzio Print Wizard, or PageTech PCLReader). Given the availability of this software (with
PCLReader being free), further discussion here will assume use of the PCL settings.

To see the print units currently defined, type:

SETPTR DISPLAY

If you haven’t defined any print units, you will see the following:

84

SETPTR DISPLAY
Unit Width Depth Tmgn Bmgn Mode Options
 0 80 66 0 0 1

Print unit 0 is the default print unit. Failing any other definition, it is defined as a page 80 characters
wide by 66 lines deep, with top and bottom margins of 0 lines. Mode 1 means that output will be sent
to a printer, and with no printer being specifically defined here, it will go to the default printer. No
options are specified.

Let’s change this definition to something a bit more useful. Type in:

SETPTR 1,90,66,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LEFT.MARGIN 2

SD will respond:

SETPTR 1,90,65,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LEFT.MARGIN 2
PRINT UNIT 1
 Page width : 90
 Lines per page : 66
 Top margin : 0
 Bottom margin : 2
 Mode : 3 (Hold file: $HOLD SDPRINT)
 Using next suffix number
 LEFT.MARGIN 2
 PCL: CPI = 12, LPI = 6, Weight = MEDIUM, Symbol set = ROMAN-8
 Paper size = A4

OK to set new parameters (Y/N)?

Before you answer ‘Y’, consider what paper size you use. The A4 papersize being set here is fine for
European countries, but North America typically uses Letter sized paper. In that case, the command
should be:

SETPTR 1,90,61,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LEFT.MARGIN 2, PAPER.SIZE LETTER

This defines the output page as 90 characters wide by 61 lines deep (letter size paper is shorter than A4
paper), with a top margin of 0, and a bottom margin of 2. The output mode is 3 – meaning that the
report will not be printed, but will be written to the $HOLD file in the account that you are working in. It
will be saved there with a name of SDPRINT_nnnn where nnnn is a number that is incremented with each
print job. We have said that the printer is PCL capable, and that we want to print in a 12 pitch font, and
have a left margin on the page of 2 characters. The paper size is A4 unless we specify a different paper
size in the SETPTR command.

Now, if we execute our SDQuery statement:

SORT XRATES WITH YEAR GE "2018" BREAK.SUP"'B'" YEAR BREAK.ON MONTH AVG USD NO.NULLS AVG AUD
NO.NULLS AVG GBP NO.NULLS DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year:
'BL'" FOOTING "Source: Rush Flat Consulting'L' Based on RBNZ data" LPTR 1

… nothing appears to happen. The cursor simply returns to the command prompt. However, if you look
in the $HOLD file, then you will see a print file in there named SDPRINT_0001 (or some other number).

SORT $HOLD
$HOLD.....
SDPRINT_00
01

1 record(s) listed

If you open this file with a text editor, you will find it contains the report output, plus some HP PCL
formatting codes.

85

If you have a PCL viewer, then you can view the contents of the report by opening this file with the
viewer, and then print the report to any printer.

Now, what happens if we want to print a report in landscape mode? We create another print unit for
landscape printing:

SETPTR 2,132,41,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LANDSCAPE, LEFT.MARGIN 2

Make sure you add a PAPER.SIZE setting and adjust the line count if you are not using A4.

The differences between this and the previous definition are:

➢ this defines print unit 2 (rather than 1)

➢ the page size is 132 characters wide by 41 lines deep

➢ the LANDSCAPE option is specified

To use this print unit, we need to specify the print unit number in the SDQuery command:

SORT XRATES WITH YEAR GE "2018" BREAK.SUP"'B'" YEAR BREAK.ON MONTH AVG USD NO.NULLS AVG AUD
NO.NULLS AVG GBP NO.NULLS DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year:
'BL'" FOOTING "Source: Rush Flat Consulting'L' Based on RBNZ data" LPTR 2

Note that we haven’t fully utilised the available page areas. The portrait mode report has plenty of
vertical space available, while the landscape mode report has plenty of horizontal space available.

Initialising print units

Of course, you don’t want to have to define a print unit every time you want to print a report.
Therefore, we need a way to automatically define the print units so they are ready for your use (print
units only exist for your current session – if you close your session, and then start a new session, the
print units you defined above will be gone).

The best way to do this is to place your print units in the LOGIN item of the account:

WED VOC LOGIN

Add the following two lines to the LOGIN entry:

SETPTR 1,90,65,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LEFT.MARGIN 2, BRIEF
SETPTR 2,132,41,0,2,3, AS NEXT SDPRINT, PCL, CPI 12, LANDSCAPE, LEFT.MARGIN 2, BRIEF

These are the same SETPTR commands we used above, with the addition of the BRIEF option. This
suppresses the ‘OK to set new parameters’ prompt when defining a print unit.

Next time you log into this account, these two print units should be automatically defined for you. To
check this, log out, then log back in and type:

SETPTR DISPLAY

This should report the two print units and their settings.

86

Defining your own print units

The above two print units will get you started in defining your own print units to suit your own
purposes. Start with what printer you have attached to your system, and what paper size it uses. If it is a
PCL printer, or you have PCL printing software, then define the print unit as PCL as this gives you
more options.

Now, you’ll need to start playing with settings to see what suits you. How may characters wide do you
need your printouts? This will define whether you use portrait or landscape mode, and what printing
pitch is necessary to achieve this. Note: You need PCL printing to do this.

Start with your paper size. Can your printer print in landscape mode? What print pitches can it print at?
Basic HP print pitches are 10, 12, and 16.67 characters per inch, while standard lines per inch settings
are 6 and 8. Even these limited settings can give you a reasonable range of print units.

Now put your fully defined print unit into the account LOGIN item so that it is defined every time you log
into the account.

Spooling print files

If your print units send their output to a file (mode 3), then you need a way to print these files. Using a
PCL viewer to do this has already been outlined above, but you can send them direct to the printer
without using a PCL viewer. However, to do this, you need a physical print unit defined – i.e. one that
points to your printer.

You could duplicate the print units you already have:

SETPTR 10,90,65,0,2,1, PCL, CPI 12, LEFT.MARGIN 2, BRIEF
SETPTR 11,132,41,0,2,1, PCL, CPI 12, LANDSCAPE, LEFT.MARGIN 2, BRIEF

This defines print units 10 and 11 (10 more than the equivalent units that go to the $HOLD file). These
don’t have the ‘AS NEXT ...’ option as this isn’t relevant to a physical printer.

To print reports from the $HOLD file to the print unit defining the physical printer, we use the SPOOL
command:

SPOOL file record(s) LPTR n

So, to print our landscape report onto the landscape physical printer:

SPOOL $HOLD SDPRINT_0003 LPTR 11

Of course, this assumes that your printer is capable of receiving the data in the file. So if you are
creating PCL files but you don’t have a PCL printer, then you will need to use a PCL viewer.

This command allows you to specify the file name. While the default output file is $HOLD, you can
specify an alternate file in the SETPTR command (using the AS PATHNAME option) or create print files in an
alternate file direct from SDBasic.

87

Deleting print files

If your print units are set to send their output to a file – then over time you will build up a number of
items within that file. The $HOLD file is a directory file, so you can simply delete them using a file
manager. Alternatively, you could delete them using the DELETE or CLEAN.ACCOUNT verbs:

DELETE $HOLD item-id

DELETE $HOLD ALL

DELETE filename item-id

DELETE filename ALL

CLEAN.ACCOUNT

CLEAN.ACCOUNT clears not only the $HOLD file, but the $SAVEDLISTS and $COMO (if it exists) files as well.
See the documentation for information on the $COMO and$SAVEDLISTS file.

Miscellaneous Aspects of SDQuery

Default display and phrases

Type in: SORT VOC

Similarly: SORT DICT XRATES

Notice that both of these commands produce a report with one or more output fields in the display –
when we didn’t specify a display clause in the statement.

SD can use a default display clause for those occasions when the user does not explicitly specify a
display clause. This default display clause is contained in the dictionary of the file with an item-name
of @.

So, the default item for VOC looks like:

CT DICT VOC @
DICT VOC @
1: PH
2: DESC FMT '60T'

And for the dictionary listing:

CT DICT.DICT @
DICT.DICT @
1: PH
2: TYPE FLD CONVERSION NAME FORMAT.CODE SMV ASSOCIATION_
3: BY TYPE.CODE BY LOC.R BY NAME

Before we look at the contents of these items, consider the files where these items were found.

For the VOC, the @ item was found in DICT VOC. That isn’t too surprising, but if you look at the user
account through a file manager, you won’t find a file named VOC.DIC. However, if you issue a LISTF
command, you will see that the path to the VOC dictionary is @SDSYS\VOC.DIC (where @SDSYS is a token

88

referring to the O/S level path to the SDSYS account). This means that all accounts on your SD system
will share the same VOC dictionary (but they each have their own individual VOC data file).

Now, what about the default dictionary listing. Do dictionaries have a dictionary to define words and
phrases? The answer is ‘Yes’, and it is named DICT.DICT. Once again, this is a shared dictionary for all
accounts and has a real pathname of @SDSYS\DICT.DIC. Note the two different spellings – the real filename
is DICT.DIC but is referenced in all accounts as DICT.DICT. Why the difference? Internally, all dictionaries
are referred to as DICT but have a real filename of filename.DIC, so it is simply consistent with the rest
of the file naming conventions.

Let’s look at what was contained in those ‘@’ items.

Both items had ‘PH’ in the first line. This identifies the item to the SDQuery processor as a PHRASE. Put
simply, a phrase is a shortcut expression for a larger set of words. When the SDQuery processor
encounters a phrase, it substitutes the words contained on line 2 of the phrase definition for the phrase
name in the SDQuery statement.

Therefore, line 2 contains the default display clause for those files (the VOC and any dictionary).

The default display clause for the VOC contains only a single output field (DESC) and a display format
expression (FMT ‘60T’).

In contrast, the default display clause for dictionaries contains seven output items and a three-level sort
clause. This indicates that phrases can contain more than just the display clause of a SDQuery
statement.

Note also that those elements are spread across lines two and three in the phrase, when the phrase is
supposed to only exist on line two. However, you can spread phrases across multiple lines, as long you
terminate any lines prior to the last line with a continuation character (an underscore).

Let’s try creating a default display item in the XRATES dictionary:

PH
WITH YEAR GE "2018"_
BREAK.ON YEAR BREAK.ON MONTH_
AVG USD NO.NULLS AVG AUD NO.NULLS AVG GBP NO.NULLS AVG EUR NO.NULLS AVG JPY NO.NULLS_
HEADING "New Zealand Exchange Rates Since 2018'L'" DET.SUP

Note that we have used extension characters to spread the phrase across multiple lines.

Now try a SDQuery statement without no display clause:

SORT XRATES

This now generates a basic report, complete with a heading and with the ID suppressed. This makes
simple reporting somewhat easier.

Now try these statements:

SORT XRATES HEADING “Example heading”

SORT XRATES BY.DSND @ID

SORT XRATES WITH YEAR GE “2018”

89

The first two of these work OK, but the third doesn’t.

In the first case, the HEADING specified in the second statement was used in preference to the default
heading, while the second example changed the sort criteria. However, the selection criteria in the third
example did not override that in the default display phrase.

Therefore, when you set up phrases, make sure that they work properly with all the statements you are
likely to use.

We can send these default reports to the print units simply by adding LPTR to the statement. However,
SD has another twist for default printing.

The default display clause for printing is actually contained in the item ‘@LPTR’. This is also contained in
the dictionary of the file being used in the SDQuery statement. However, if ‘@LPTR’ does not exist, then
the default display specified in ‘@’ will be used.

This lets you define one default display for on-screen reporting, and a different (perhaps wider) default
display for printing.

Saving SDQuery statements for later use

You now have your completed SDQuery statement. But it is several lines long, and you don’t want to
type it in every time that you want to run that particular report. What we need now is some way to save
the statement, so that you can run it again later.

SD provides several ways to do this.

The traditional method amongst Information style databases is to create a ‘sentence’ or a ‘paragraph’ in
the VOC, and then run the sentence or paragraph by typing in its name.

A sentence contains an ‘S’ in the first line, and the SDQuery command in the second line. Therefore, a
sentence named ‘MY.QUERY’ might look like:

CT VOC MY.QUERY
VOC MY.QUERY
1: S
2: SORT XRATES WITH YEAR GE "2018" BREAK.SUP "'B'" YEAR BREAK.ON MONTH AVG USD NO.NULLS AVG AUD
NO.NULLS AVG GBP NO.NULLS DET.SUP HEADING "'DGC'Average Monthly Exchange Rates'G'Page 'PLC'Year:
'BL'" FOOTING "Source: Rush Flat Consulting'L' Based on RBNZ data" LPTR

If you already have this command sitting on your command stack, you can get SD to create the
sentence for you. Let’s assume that the command you want to load into the sentence is in stack position
5. Type in:

.S MY.QUERY 5 5

Make sure you include the dot before the ‘S’. This says save lines 5 to 5 as an item in the VOC named
‘MY.QUERY’. Because there is only one line to save here, the second 5 could have been omitted.

If you specify more than one line to be saved, the SD will save the commands as a paragraph (rather
than a sentence).

90

Now, typing ‘MY.QUERY’ from the command prompt will display the report.

To see the paragraphs and sentences stored in the VOC, type:

LISTS Lists sentences

LISTPA Lists paragraphs

What about running the command if it is stored in a separate file? Well, let’s create a file to hold the
queries in first:

CREATE.FILE QUERIES DIRECTORY

Note that this statement defines the file as a directory file. This means that you can use any text editor
to edit the items directly from the operating system – although we’ll still access them like any other
item from inside SD.

Using the text editor, enter the query then make the first line of the item ‘S’ or ‘PA’ as appropriate, then
file the item.

Now you can run the item by typing either of:

RUN QUERIES MY.QUERY

.X QUERIES MY.QUERY

Which storage method should you use for your queries? That is up to you.

If you only have a small number of saved queries, then it won’t matter which method you use.
However, if you have a large number of saved queries, then it is probably better to use a distinct file for
this purpose. This will help keep the VOC reserved for its correct purpose – that of being a repository of
keywords used by SD.

91

Introduction to SDBasic

General Considerations

What is SDBasic

SDBasic is the programming language that comes bundled with SD. As its name implies, it is a dialect of
the BASIC language. This dialect is closely related to the BASIC dialects that come with other multi-value
databases.

SDBasic has its own set of enhancements that are not in other multi-value databases. These include:

➢ local variables

➢ object-oriented programming

➢ socket connections

➢ inbuilt encryption

plus enhancements to many of the standard inbuilt functions.

SDBasic is a server-side language. Some people have described SDBasic as a ‘server side scripting
language’.

SD does not support any other server side language. However, SD does offer two interfaces to external
languages – one for Visual Basic and one for C. These interfaces allow a variety of languages to
communicate with SD. Further, applications developed using these interfaces may split the processing
between the server and the client.

What is covered here?

This is not intended to be a programming tutorial – it is assumed that the reader is generally familiar
with programming principles. Further, it is assumed that the reader is familiar with event-driven
programming principles.

Nevertheless, a reasonable amount of basic programming information is covered, In particular,
differences from other BASIC dialects will be covered.

Coding styles

Ladybridge Systems recommend the following coding style for SD applications:

92

➢ Write source code in lowercase for improved readability. We have partially adopted a
convention that equate token names should be in uppercase.

➢ Use the standard command parser (!PARSER) rather than writing your own.

➢ Use token names from include records rather than literal values where appropriate.

➢ Use CRT or DISPLAY rather than PRINT unless you want the output to go to a printer.

➢ SD is reasonably case independent. Try to preserve this by looking up VOC or dictionary items as
typed and, if not found, by trying again in uppercase.

➢ Whatever the programming purists may say, limited careful use of GOTO is fine.

➢ Use meaningful label names. Numeric label names are not allowed in the master source.

➢ The standard message handler should be used for all output text. Use message numbers in the
range 10000 - 19999. We will change these to the final message number on integration where
appropriate. Pick style messages from the ERRMSG file (and hence the Pick syntax variant of STOP

and ABORT) may not be used.

➢ Programs must conform to the locking rules such that all writes and deletes, including adding a
new record, are covered by a suitable lock. Programs must operate correctly with the MUSTLOCK
configuration parameter set to 1.

➢ Programs must not rely on settings in the $BASIC.OPTIONS record for correct compilation.

➢ Programs must be adequately commented that their operation can be clearly understood for
maintenance purposes.

Their purpose in publishing this guide is so that any submissions of improvements can be incorporated
into the SD codebase with a minimum of refactoring. Most of these points can be readily adopted.

These guidelines really apply if you are coding for SD only. However, if there is any possibility that
your application will be ported to another database, then you need to consider compatibility. You may
say that you have no intention of moving to another database, but that isn’t the only reason to consider
compatibility – your application may be so good that users of UniVerse, UniData, D3, Reality, jBASE,
or mvBASE may want to use it on their systems.

What is important for compatibility? Here are some suggestions:

➢ Use upper case keywords – some multi-value databases (e.g. mvBASE) cannot handle lower
case keywords

➢ Be consistent with your casing of variable names. For simplicity, it is best to use either all
uppercase or all lowercase. The reason for this is that variable names in other databases are
usually case sensitive – therefore, TEMP, Temp, and temp are all different variable names in most
other databases, but are treated as being the same variable in SD.

93

➢ Think carefully before using features of SDBasic that are not standard across the multi-value
flavours. For example, no other multi-value database supports local variables or object oriented
programming.

➢ Use keywords that are consistent between the various multi-value databases. Even where
different databases have the same keyword, the keyword may not always have the same syntax,
or have the same functionality. For example, in SD, SWAP is a synonym for CHANGE (as it is in
mvBASE). In UniData, SWAP has the same functionality, but has a different syntax. In UniVerse,
SWAP has an entirely different function. In this case, do not use the keyword SWAP if you want to
guarantee compatibility with other databases.

In this guide, the following conventions will be used:

➢ Keywords will be in upper case

➢ Variables will be in lower case

➢ Constants will be in upper case

You may also want to read the coding standards article on the PickWiki website:
http://www.pickwiki.com/cgi-bin/wiki.pl?CodingStandards

Where is the GUI?

SD does not directly support GUI programming. While this may surprise some, this is consistent with
its role as a database server system. Few (if any) database servers directly support GUI programming –
most rely on external toolsets to provide a GUI front-end to the database using the inbuilt API’s.

There are various ways to add a GUI to SD applications. These include:

➢ Use SDClient to connect an external language to SD using either the VB or C interface

General Programming Issues

Creating, Compiling, and Running Programs

Programs are stored in an SD file. In the multi-value world, this file is traditionally named BP, but may
take on any valid filename. Programs may be stored in multiple files, thereby assisting application
development by keeping programs logically grouped together.

Let’s create a file for programs:

CREATE.FILE BP DIRECTORY
Created DICT part as BP.DIC
Created DATA part as BP
Added default '@ID' record to dictionary

94

By convention, programs are often stored in a file named BP (meaning Basic Programs), but there is no
restriction on filenames for programs. You could use PROGRAMS, PROGS, UTILS, or any other valid
filename.

Note that we’ve created this file as a directory. This type of file is suitable for text items, and allows the
items in the file to edited directly from the operating system level – i.e. you can use your favourite text
editor to edit the programs. I

Now, let’s create the standard “Hello world” program:

SDEdit: BP HELLO
Edit using <M>icro, <N>ano, <E>xit :?

This will start the MICRO editor. If the HELLO program exists, then MICRO will display the existing
program; otherwise, it will display an empty edit window:

PROGRAM HELLO
CRT "Hello World!"
STOP
END

The program starts with a declaration that this is a program. This declaration is optional for programs
but is required for external subroutines (SUBROUTINE), functions (FUNCTION), and classes (CLASS). If the
name declared here differs from the name by which the program is stored in the file, then the compiler
will give a warning message. While it is permitted for these names to be different, it is good practice to
make them the same, and certainly makes it easier to debug applications.

The second line of the program does all the work. This prints the string “Hello World!” to the terminal.

The STOP command is not strictly necessary, but it is good practice to use them at the expected end of
the executable code.

The END statement is also not strictly necessary, but the compiler will inform you if it is not present.
The END statement marks the end of the program.

Close the WED editor, and save the program when prompted. In WED, you can also save the program by
clicking on the save icon, or by selecting ‘Save’ or ‘Save as’ from the ‘File’ menu.

Now compile the program:

BASIC BP HELLO
Compiling BP HELLO
0 error(s)
Compiled 1 program(s) with no errors

and run it:

RUN BP HELLO
Hello World!

Finally, (assuming this is a program we want to keep), we will want to CATALOGUE the program. This lets
us run the program simply by using the program name, rather than by using the RUN command.

95

CATALOGUE BP HELLO
HELLO added to private catalogue

HELLO
Hello World!

SD provides a number of options for cataloguing. The default method is private cataloguing as shown. .

By default, you will need to recatalogue the program every time it is compiled. One way to get around
this it to use a compiler directive that directs the compiler to automatically catalogue the program. The
compiler directive can be placed into each program individually or placed in a $BASIC.OPTIONS item so
that it applies to all programs within a file, or all programs within an account.

In this book, the compiler directive will be placed in each program. This makes our intentions explicit
to anyone who subsequently edits the program.

Note that the commands invoking the editors have the same basic structure as virtually any other SD
command:

command filename itemname

Therefore, if you are using an editor other than SDEdit, simply substitute the name of the editor you are
using:

SED BP HELLO

Likewise, if you are using a different filename:

SDEdit PROGS HELLO

Statements, variables, tokens, constants, and operators

Statements

A program is made up of a series of statements which collectively tell the computer what to do.
Generally, programs should be written with one statement per line – although multiple statements may
be written on a single line if they are separated by a semi-colon.

statement 1 ; statement 2 ; statement 3

Statements beginning with an asterisk (*), an exclamation mark (!), or the keyword REMARK (or REM) are
considered to be comments. Comments are often appended to the end of an active statement by using a
semi-colon to denote a new statement, followed by the comment marker.

As noted above, programs are normally written with one statement per line. However, there are always
exceptions:

➢ Some statements cover several lines

➢ Comments are often placed as a second statement on a line

➢ Sometimes, it is more convenient to place related statements together on a single line.

96

An example of all three of these possibilities is shown below:

 BEGIN CASE
 CASE papersize = 'A4'; papersizeindex = 9
 CASE papersize = 'LETTER'; papersizeindex = 1
 CASE papersize = 'EXECUTIVE'; papersizeindex = 7
 CASE papersize = 'LEGAL'; papersizeindex = 5
 CASE papersize = 'B5'; papersizeindex = 13
 CASE papersize = 'ENV10'; papersizeindex = 15
 CASE papersize = 'DL'; papersizeindex = 19
 CASE 1; papersizeindex = 9; * A4 default
 END CASE

This code fragment sets the variable papersizeindex based on the literal value of papersize.

➢ This whole block of statements makes up a CASE statement.

➢ There is a comment at the end of the line that starts with CASE 1.

➢ Each of the individual CASE lines has a second statement that assigns the papersizeindex
variable.

Variables

SDBasic variables have relatively few naming restrictions.

➢ They must start with a letter

➢ They must not end with an underscore

➢ They consist of letters, digits, dollar signs, percentage signs, periods (full stops) and
underscores.

The documentation provides a short list of reserved names which cannot be used as variable names.
This means that it is technically possible to use the other keywords as variables. However, this is not a
good idea as it will lead to confusion over whether you are using a variable name or a keyword.

There is no restriction on the length of variable names – although for practical purposes you should
avoid very long names.

SDBasic variables can hold data of any type, and can change their type during the course of program
execution. Therefore, we could write:

temp = '05' ; * Define temp as string variable
CRT temp
temp = temp + 0 ; * Redefine as numeric
CRT temp
temp = 'X':temp ; * Redefine as string
CRT temp

and the output from this program would be:

05
5
X5

97

Variables should be declared before they are used. However, unlike some languages, this declaration
does not need to be formal – it is simply an assignment with an initial value:

temp = 0

If this assignment does not take place, the program will abort at runtime with a variable not assigned
error. For example:

PROGRAM TEST
FOR ii = 1 TO 10
 jj += 1
 CRT jj
NEXT ii
END

BASIC BP TEST
RUN BP TEST
000000B1: Unassigned variable JJ at line 3 of D:\SD\SDINTRO\BP.OUT\TEST

In this example, the variable jj had no value when the program encountered it for the first time.

Tokens

Tokens are predefined language elements that you use to represent a value in the programming
environment. They aren’t variables because you (usually) cannot assign new values to them, nor are
they constants because they may change.

In SD (as with other multi-value environments), tokens are prefixed by the ‘@’ symbol. The tokens
dealing with multi-value delimiters have already been covered in Section 2.4.3. A few of the other
frequently used tokens are shown in the table below:

Token Meaning
@TRUE A logical true value – nominally 1
@FALSE A logical false value – nominally 0

@LOGNAME or @USER The user’s operating system logon name
@SENTENCE The most recently executed SD sentence
@WHO The current account

The full list of tokens (or @-variables) can be found in the SD help files under SDBasic.

Constants

Constants are language elements that are assigned values that never change. Further, if assignment of a
new value is attempted, an error will result.

Constants are assigned using the EQUATE statement:

EQUATE pi TO 3.141592654

Thereafter, constants may be used within SDBasic expressions:

98

area = pi * PWR(radius, 2)

Multi-value Variables

SD is a multi-value database, and accordingly, variables used in the programming language may be
multi-valued. Such variables may also be termed ‘dynamic arrays’ or delimited strings, and are denoted
as:

varname<amc {,vmc {,svmc}} >

In this syntax, the angle brackets ‘<’ and ‘>’ indicate the use of a multi-valued variable. Multi-valued
variables can have up to 3 dimensions corresponding to attributes15 (fields), values, and sub-values. The
following are valid multi-value variables:

abc<3>

def<2, 1>

ghi<ii, jj, kk>

The final example uses variables to denote the index positions of each dimension of the variable.

If you wish to append data to the array, you can use an index value of -1. For example:

abc<-1>

def<-1, 1>

ghi<3, 1, -1>

Note that you do not need to explicitly set the dimensions of the variable before use. You can simply
add dimensions, and add elements to each dimension as required:

score = ''
FOR die1 = 1 TO 6
 FOR die2 = 1 to 6
 score<die1, die2> = die1 + die2
 NEXT die2
NEXT die1

This creates a 2-dimensional dynamic array holding all the possible scores from rolling 2 dice. This
could then be used to return the combined value of two die:

rollvalue = score<die1, die2>

Referencing positions in dynamic arrays is often done by the numeric position in the array. However, as
dynamic arrays often hold data that has been read from a file, it is often useful to use an equated
constant that gives you a better idea of what the data is in the variable. Consider the following
statements:

rec<10> = rec<8> + rec<9>

sales.rec<SL.TOTAL> = sales.rec<SL.SUBTOTAL> + sales.rec<SL.VAT>

There are two points to take from these statements:

15 They syntax description here uses abbreviations of amc, vmc, and svmc. These mean “attribute mark count”, “value
mark count”, and “sub-value mark count”. These abbreviations are common in the PICK world.

99

➢ Using equated constants has made the statement much more understandable – you don’t have
look up what data is held in positions 8, 9, and 10 in the dynamic array to understand the
meaning of the statement

➢ Mistakes in programming logic are much easier to spot because you can read the purpose of the
statement. For example, the first statement may have been written as:

rec<10> = rec<8> + rec<19>

The mistake is not immediately obvious. This mistake would be unlikely if equated
constants had been used.

SD can create a set of equated constants for you from a file dictionary. The command for this is
GENERATE:

GENERATE XRATES
Type (D=dynamic array, M=matrix, or DM=both): D
Prefix for dynamic array tokens (excluding separator): XR

This creates an item in the BP file that can be included in programs:

CT BP XRATES.H
BP XRATES.H
01: * BP XRATES.H
02: * Generated from DICT XRATES at 18:16:42 on 16 May 2009
03:
04: equate XR.TWI to 1
05: equate XR.TWI.CNV to "MR1,Z"
06: equate XR.USD to 2
07: equate XR.USD.CNV to "MR4,Z"
08: equate XR.GBP to 3
09: equate XR.GBP.CNV to "MR4,Z"
10: equate XR.AUD to 4
11: equate XR.AUD.CNV to "MR4,Z"
12: equate XR.JPY to 5
13: equate XR.JPY.CNV to "MR2,Z"
14: equate XR.EUR to 6
15: equate XR.EUR.CNV to "MR4,Z"
16: equate XR.GDM to 7
17: equate XR.GDM.CNV to "MR4,Z"

Note this has created constants not only for the field numbers in the record, but also the conversion
codes used to convert data from internal to external format.

Operators

SD has the usual set of operators for writing expressions and relational conditions. In addition, it has a
set of substring extraction operators, a pattern matching operator, and a set of alternative relational
operators.

Substring extraction

SD uses square brackets ([and]) to denote substring extraction as follows:

substring = string[startpos, numchars]

For example:

100

st = 'AbcDefGhi'
ss = st[4,3]

In the above program fragment, the substring ‘Def’ is assigned to the variable ss.

To extract the last n characters, use:

substring = string[n]

For example:

st = 'AbcDefGhi'
ss = st[3]

In this example, the substring ‘Ghi’ is assigned to the variable ss.

In some other languages, this substring extraction functionality is provided by the LEFT, MID, and RIGHT
functions.

Pattern matching

Pattern matching is often used in the context of an IF statement:

IF var MATCHES pattern THEN ...

For example:

xx = '(04) 456 7890'
IF xx MATCHES '"("2N") "3N" "4N' OR xx MATCHES '"("2N") "3N"-"4N' THEN

The above program fragment matches the test string to see if it is a phone number. Note, however, that
not all phone numbers will match the test patterns. Clearly, some thought needs to be put into the
appropriate tests for phone numbers.

For more information on how to define the test patterns, search for MATCHES in the online help.

Alternative relational operators

Most languages have a set of mathematical symbols for use in relational comparisons. SD has a set of
mnemonic codes that act as synonyms for these mathematical symbols. These are shown in the table
below:

Symbol Alternatives
 < LT

 > GT

 = EQ

 # NE <> ><

 <= LE =< #>

 >= GE => #<

MATCHES MATCH

AND &

OR !

For example:

101

IF xx LT 1 THEN xx = 1

Assignment

Simple assignment takes the form:

var = value

var = expression

Assignment shortcuts

In common with some other languages, SD offers shortcuts for repeated operations. For example:

xx = xx + 1

could be written as:

xx += 1

This not only saves keystrokes in typing, but is actually more efficient in execution. These shortcuts
take the general form:

var shortcut value

The following set of assignment shortcuts are available:

+= Add expression to the original value
-+ Subtract expression from the original value
*= Multiply original value by expression
/= Divide original value by expression
:= Concatenate expression as a string to the original value

For example:

outputstring := thisline:CR:LF

This takes the current value of outputstring and appends the string value of thisline and a carriage
return/line feed sequence.

Note this also introduces the use of the colon (:) as the means of concatenating two strings together. For
example:

newstring = string1:string2

Whitespace can be introduced into the statement to make the operators more visible without changing
the functionality of the statement. For example:

newstring = string1 : string2

This separation makes each component of the statement more visible, and can aid with understanding.

Substring assignment

Substring extraction was outlined in the section on operators above. Similar techniques can be used to
assign values to substrings:

102

var[startpos, numchars] = expression

For example:

st = 'Abcdefghi'
st[4,3] = '123'

The new value of st would be: Abc123ghi

Now consider the following example:

st = 'Abcdefghi'
st[4,3] = '12'

In this case, the new substring is shorter than the existing substring. SD’s behaviour (and the resulting
value of st) here is dependent on the $MODE settings used to control the compiler. See the online help
for more information.

A shortcut method is available to assign the trailing characters of a string:

var[numchars] = expression

For example:

st = 'Abcdefghi'
st[3] = '123'

The new value of st would be: Abcdef123

Finally, SD has another form of substring assignment particularly suited to use with delimited strings:

var[delimiter, firstgroup, numberofgroups] = expression

For example:

key = '1234*DEF*14996'
key['*', 3, 1] = DATE()

This would replace the 14996 part of the key with the internal value of the current date. For the 14th of
April, 2009, this would make the key value: 1234*DEF*15080

Null values

In common with the most other multi-value databases, SD does not have a special character
representing the null value. For practical purposes, an empty string is considered a null value.

A simple program
The best way to illustrate the statements and functions available in SD is to show them in operation.
Therefore, we will now consider a short program and examine how it works.

Part 1 of ‘Getting Started in SD’ used several files to illustrate how to use SDQuery. These files contained
interest and exchange rate for New Zealand. Building on this base, an appropriate first program will
allow this data to be viewed.

103

Program

PROGRAM SHOW.XRATES

* Program to display exchange rates for a year nominated by the user.
*
$CATALOGUE

PROMPT ''
OPEN 'XRATES' TO xrates ELSE STOP 201, 'Xrates'
OPEN 'DICT','XRATES' TO xrates.dict ELSE STOP 201, 'Dict Xrates'

! Define constants

$INCLUDE SYSCOM KEYS.H
$INCLUDE BP XRATES.H

! Read conversions and headings from dictionary

dnames = 'TWI,USD,GBP,AUD,JPY,EUR'
CONVERT ',' TO @AM IN dnames

cnvs = ''
hdgs = ''
FOR cc = XR.TWI TO XR.EUR
 dictname = dnames<cc>
 READ drec FROM xrates.dict,dictname THEN
 conversion = drec<3>
 IF conversion EQ '' THEN conversion = 'MR0,Z'
 cnvs<cc> = conversion
 hdgs<cc> = drec<4>
 END
NEXT cc

! Page heading

CRT @(IT$CS):
CRT @(00,00):'Display exchange rates'
CRT @(00,01):'======================'

! Main loop

LOOP
 CRT @(00,03):@(IT$CLEOS):'Enter year: ':
 INPUT yyyy:
 IF (yyyy EQ '') OR (UPCASE(yyyy) EQ 'X') THEN EXIT

 IF NOT(yyyy MATCHES '4N') THEN
 CRT @(18,03):'Invalid year':
 INPUT pause,1:
 CONTINUE
 END

! Read data from file and display

 first = @TRUE
 FOR mm = 1 TO 12
 xid = yyyy:mm 'R%%'
 READ xrec FROM xrates, xid THEN
 IF first THEN
 CRT @(00,05):'Month':
 FOR cc = XR.TWI TO XR.EUR
 CRT hdgs<cc> 'R#12':
 NEXT cc
 CRT
 first = @FALSE
 END

 xdate = '01/':mm:'/':yyyy
 CRT OCONV(ICONV(xdate, 'D'), 'DMAL[3]') 'L#5':
 FOR cc = XR.TWI TO XR.EUR
 CRT OCONV(xrec<cc>, cnvs<cc>) 'R#12':
 NEXT cc
 CRT
 END
 NEXT mm

104

 IF NOT(first) THEN
 CRT
 CRT 'Press any key to continue ':
 END ELSE
 CRT @(00,05):'No data on file for year ':yyyy:
 END
 INPUT pause,1:
REPEAT

STOP
END

Analysis

This program asks the user to enter a year. It then displays the exchange rate data on file for that year.
The data is displayed until the user presses enter, and then the program returns to the prompt for a year.
The user exits the program by pressing enter at the year prompt. Sample output is shown below:

Display exchange rates
======================

Enter year: 2004

Month TWI USD GBP AUD JPY EUR
Jan 66.4 0.6724 0.3690 0.8728 71.55 0.5332
Feb 68.0 0.6916 0.3703 0.8891 73.68 0.5473
Mar 66.3 0.6614 0.3616 0.8811 71.90 0.5388
Apr 64.7 0.6419 0.3556 0.8622 68.94 0.5350
May 63.1 0.6156 0.3445 0.8731 69.00 0.5127
Jun 64.2 0.6293 0.3440 0.9058 68.81 0.5184
Jul 65.4 0.6466 0.3508 0.9030 70.67 0.5268
Aug 66.5 0.6542 0.3594 0.9209 72.19 0.5370
Sep 67.1 0.6588 0.3674 0.9384 72.49 0.5392
Oct 68.5 0.6825 0.3782 0.9326 74.47 0.5471
Nov 68.3 0.6993 0.3764 0.9084 73.29 0.5387
Dec 69.0 0.7142 0.3702 0.9315 74.18 0.5337

Press any key to continue

Let’s step through the program to see how it works:

The first functional line is $CATALOGUE. This is a compiler directive rather than a statement, and tells the
compiler to automatically catalogue the program in the private catalogue every time it is compiled.

PROMPT '' sets the prompt character to nothing. By default, SD displays a '?' character whenever the
program reaches an INPUT statement. By setting it to null, the developer has full control over how the
program appears to the user.

The two OPEN statements open the XRATES data file and dictionary. This lets the program read from these
files later.

The two $INCLUDE statements include code fragments from elsewhere on the system. The first of these is
the keys definition file included with SD. The second is the file definition item we created for the
XRATES file using the GENERATE command in the section on Constant. By including these files, we can use
mnemonic codes for file references and system functions rather than numbers.

The next section reads the column headings and conversions to apply to the data from the file
dictionary. First, we create a dynamic array that contains the ID’s of the dictionary items. This is done
in two steps – firstly by creating a string variable containing the ID’s, and then by converting the string

105

to a dynamic array by changing the commas to attribute marks. This approach is used because it is
easier than writing a line such as:

dnames = 'TWI':@AM:'USD':@AM:'GBP':@AM:'AUD':@AM:'JPY':@AM:'EUR'

Next, the conversions and column headings for each of the columns are read from the dictionary. These
conversions transform the stored data from its internal format to its external format. While these
conversions were also defined in the include file created using the GENERATE command, reading them
from the dictionary puts them into a more general structure which makes them easier to use.

The screen is then cleared, and some page headings put in place.

The rest of the program is encompassed by the main loop. This starts with a statement that clears the
screen from line 3 onwards, and displays a prompt asking the user to enter a year. This year is then
tested to see if it matches a 4 digit pattern. If the year does not match this pattern, then an error message
is displayed, and the loop is started again.

If the year does contain 4 digits, then the program will attempt to read data for that year. Note that this
will happen even if the year entered is nonsensical – such as 0000 or 2050. However, the read is
structured so that all years are handled appropriately, whether they contain data or not.

An attempt is made to read the data for each month of the year. If data for this month is found on file,
then the data is displayed. If this is the first month found for the year, then the column headings are
written to the screen first. This means that if no data are found for the year, then no column headings
are displayed.

Each line of data is displayed by first calculating the month name. Once the month is displayed, then
the program loops through the record converting the data to external format, and displaying it.

Finally, a message is displayed, either asking the user to press any key to continue, or informing them
that there was no data on file for that year. This message is displayed until the user presses enter, when
control returns to the top of the loop.

Detail points

The program uses defined constants wherever possible to avoid incorrect numbers being accidentally
used. Example of this are:

FOR cc = XR.TWI TO XR.EUR

CRT @(IT$CS):

The constants XR.TWI and XR.EUR were defined in the XRATES.H include item, and evaluate to values of
1 and 6 respectively. Therefore, the FOR statement evaluates to:

FOR cc = 1 TO 6

Likewise, the CRT statement evaluates to:

106

CRT @(-1):

This expression is used to clear the screen. Similarly, the line:

CRT @(00,03):@(IT$CLEOS):'Enter year: ':

firstly, positions the cursor, then clears the screen from the position onwards using the @(-3) function.

The constants used in these screen functions are defined in the KEYS.H item in the SYSCOM file. This item
contains many more constants for use within SD.

These CRT statements are terminated by a colon. A colon in an expression is used to concatenate two or
more elements together. When used at the end of a CRT statement, it acts to hold the cursor at that
position. If the colon were not present at the end of the “Enter year” statement, then an automatic end
of line sequence would be executed, causing the cursor to go to the left hand edge of the following line.

A number of lines have formatting expressions:

xid = yyyy:mm 'R%%'

CRT hdgs<cc> 'R#12':

In the first of these, the format expression ‘R%%’ forces the variable mm to be formatted right-justified in
a field 2 characters wide and padded with zeroes. Therefore, a value of mm of 1 (i.e. month 1 or January)
would be formatted as 01. This is concatenated to the 4 digit year (say 2009) to produce an exchange
rate identifier of 200901. This identifier is then used to read the data for that month from the exchange
rates file.

The second use of the format expression is to format the output of the column headings (and later of the
rows of data). The ‘R#12’ expression means format the data right-justified in a field of 12 blank
characters.

The printing of the month name is accomplished by the following two lines:

xdate = '01/':mm:'/':yyyy

CRT OCONV(ICONV(xdate, 'D'), 'DMAL[3]') 'L#5':

The first line is clear enough. This creates an international format date string from the month number
and year. Therefore, for a month number of 1 and a year of 2009, xdate would be ‘01/1/2009’. If you
are in North America, you would need to change this date string, or specify a European date conversion
in the following statement.

The second line is a little more complicated, but is really just three operations carried out in a single
line. First, the date string is converted to an internal date:

ICONV(xdate, 'D')

So, ‘01/01/2009’ would be converted to 15128. (Type in: DATE INTERNAL 01/01/09 from the command
prompt).

The next part gets a month representation from that date:

107

OCONV(15128, 'DMAL[3]')

The ‘DMA’ portion of the conversion expression returns the month name as ‘JANUARY’. The ‘L’
converts this to Title case (January), and the ‘[3]’ truncates this to 3 characters (Jan).

Finally, this is displayed left-justified in a field of 5 blank characters:

CRT 'Jan' 'L#5':

Note the presence of the colon to keep the cursor on the current output line.

The final details involve printing a line of data:

FOR cc = XR.TWI TO XR.EUR
 CRT OCONV(xrec<cc>, cnvs<cc>) 'R#12':
NEXT cc
CRT

This code fragment displays each of the columns in a field of 12 characters wide on the screen. Each
field is placed immediately to the right of the preceding field because the cursor is held on the line by
the colon following the format expression. Once the loop is complete for each row, the cursor is still
held on the output line. The CRT statement on its own outside the loop moves the cursor to the next line
to print a new month’s data.

The actual expression used to display the data is also interesting. This is easier to understand if we
substitute the variable cc for one of its actual values:

CRT OCONV(xrec<XR.TWI>, cnvs<XR.TWI>) 'R#12':

This expression says take the TWI value from the exchange rate record and apply the output conversion
defined for the TWI field, then display it right-justified in a field of 12 spaces. If we go back to the
sample output displayed above, we can see that the TWI for January 2004 was 66.4 – this is the output
format. This was actually stored as 664, and the output conversion of ‘MR1,Z’ converted this internal
representation of 664 to an external representation of 66.4. To check the actual conversion used by
TWI, check the conversion stored in the dictionary:

CT DICT XRATES TWI

The conversion appears on line 3 of the dictionary. We read these output conversions from the
dictionary at the start of the program to fill the cnvs dynamic array. Because the structure of the cnvs
dynamic array matches that of the xrec dynamic array that holds the exchange rate, we could use these
in a matched fashion in the display loop.

It is worthwhile considering how we could have used the conversions defined in the $INCLUDE statement
to display the same data. To have used those conversions, we would have had to refer to them by their
name. That would have meant the display statement would have been something like:

CRT OCONV(xrec<XR.TWI>, XR.TWI.CNV>) 'R#12':
CRT OCONV(xrec<XR.USD>, XR.USD.CNV>) 'R#12':
CRT OCONV(xrec<XR.GBP>, XR.GBP.CNV>) 'R#12':
etc

108

So, by putting the conversions in a dynamic array, we were able to make the display portion of the
program much more compact. Of course, we could have accomplished this by creating the cnvs
dynamic array from the defined conversions rather than reading from the dictionary:

cnvs = ''
cnvs<XR.TWI> = XR.TWI.CNV
cnvs<XR.USD> = XR.USD.CNV
cnvs<XR.GBP> = XR.GBP.CNV
etc

In fact, this is probably a better method of loading the conversions than reading from the dictionary.
The reason for this is that SD supports dictionary structures used in other multi-value databases that
have the conversion in a different place in the dictionary. Further, even if we adapted the read section to
get the conversion from the correct position, we would also need to check that the value did not contain
some other processing codes. Therefore, our dictionary read section would become something like:

cnvs = ''
hdgs = ''
FOR cc = XR.TWI TO XR.EUR
 dictname = dnames<cc>
 READ drec FROM xrates.dict,dictname THEN
 dtype = drec<1>[1,1]
 BEGIN CASE
 CASE (dtype EQ 'D') OR (dtype EQ 'I') OR (dtype EQ 'C')
 conversion = drec<3>
 hdgs<cc> = drec<4>
 CASE (dtype EQ 'A') OR (dtype EQ 'S')
 conversion = drec<7>
 hdgs<cc> = drec<3>
 CASE 1
 conversion = ''
 END CASE
 dc = DCOUNT(conversion<1>, @VM)
 IF dc GT 1 THEN
 conversion = conversion<dc>
 END
 IF conversion = '' THEN conversion = 'MR0,Z'
 cnvs<cc> = conversion
 END
NEXT cc

This code fragment gets the heading and conversion from the appropriate position for each dictionary
type. Note the following points:

➢ Some dictionary items (usually A and S types) may have multi-valued conversion fields. The
code therefore checks for the presence of value marks and gets the last value as the conversion
code.

➢ If the dictionary item is not one of the specified types, then the conversion is explicitly set to a
null value. If we didn’t do this, then the variable ‘conversion’ would still contain the conversion
from the previous dictionary item (or would be undefined if this was the first loop).

➢ Headings are only set for the specified dictionary types. If the dictionary is of some other type,
then no heading is set.

The alternative to this code is to use the GENERATE command to create an include file containing the
conversions. You can then check that include file to make sure the conversions are valid, and edit them
if necessary.

109

Other improvements that could be made include reading the display width for each column from the
dictionary (field 5 of a D, I, or C type dictionary), and allowing for multi-line column headings.

Overall, this is a fairly simple program. However, it introduces many of the basic elements that are
present in larger programs – data input, validation, reading data from a file, formatting data, and
outputting formatted data to an output device. All that is really missing is writing data to a file.

Some useful functions and statements

There are a number of functions that are frequently used in multi-value databases. It is useful to outline
some of these here so that you will understand them as we cover other programming structures.

CRT and DISPLAY

CRT and DISPLAY are the same function. In this book, CRT will be used, but in other programs you may
find DISPLAY being used.

As its name suggests, CRT outputs data to the screen. Its syntax is:

CRT printitem {,printitem}

The printitem may be a variable, expression, or a literal string. If there are multiple printitems separated
by commas, the commas are replaced by TAB characters to produce a simple formatted display.

You can include a cursor positioning command as part of the CRT statement:

CRT @(col,line)

CRT @(col)

Line and column numbering starts at zero, so @(0,0) will position the cursor at the top left of the screen.
The second version shown will position at ‘col’ on the current line.

The CRT @(x) function also accepts negative arguments for terminal control purposes. Some useful
examples of these include:

CRT @(-1) Clear screen
CRT @(-3) Clear to end of screen
CRT @(-4) Clear to end of line

Tokens to use with the CRT function are contained in the KEYS.H include item in the SYSCOM file. Tokens
are useful because they make it less likely that you will use an incorrect numeric value, and they make
the code easier to read. The tokenised equivalents of the three CRT statements shown above are:

CRT @(IT$CS)
CRT @(IT$CLEOS)
CRT @(IT$CLEOL)

To use these tokens, you need to $INCLUDE the KEYS.H item in your program.

110

Note that the CRT function issues an automatic end of line sequence, so if you want to hold the cursor at
that position, you need to suppress this sequence. This is done by appending a colon (:) to the
command:

CRT @(20,05):

It is common for a CRT statement to contain an expression which builds a formatted string for display:

CRT @(sx,sy):qty<mthno> 'R#12Z':

The above statement outputs the value contained in the mthno attribute of the qty variable at position
(sx, sy) on the screen, displayed right-justified in a field of 12 spaces. See the online help for more
information on format specifications.

PRINT

PRINT is closely related to the CRT function. However, whereas the CRT function always outputs to the
screen, PRINT will output to an output device – whether that is the screen or a print unit (printer). Its
syntax is:

PRINT {ON printunit} printitem {,printitem}

Output is directed as follows:

➢ If a print unit is specified, then output will be directed to that print unit

➢ If the print unit specified is -1, then output will go to the screen

➢ Print unit 0 (the default) is switchable between the screen and the print unit by use of the PRINTER

ON/OFF statement

➢ Printunit may be a number between 0 and 255. The characteristics of the print unit may be set
using the SETPTR command from the SD command environment, or the SETPU statement from
within SDBasic.

PRINT "This text will go to the screen"
PRINTER ON
PRINT "This text will go to the print unit"
PRINT ON -1 "This text will go to the screen"
PRINTER OFF

As with the CRT statement, you can include cursor positioning commands with the PRINT statement – but
these will have no effect if output is directed to a print unit.

INPUT

INPUT accepts input from the keyboard or data queue and stores that input in a variable:

INPUT variable {,length}

INPUT accepts a number of other parameters not shown above – see the online help for more details.

111

If length is specified, then input of characters is automatically terminated when that number of
characters has been input:

INPUT pause,1

A more sophisticated version of INPUT is the INPUT @(x,y) statement. This version allows cursor
positioning, formatting of the displayed/entered variable, and various modes of editing – see the online
help for more details.

DCOUNT

DCOUNT is used to count the number of components in a delimited string. As multi-value variables are
simply delimited strings, it is frequently used to count the number fields, values, or sub-values in a
variable. Its syntax is:

number = DCOUNT(string, delimiter)

For example:

menucnt = DCOUNT(menuitems<1>, @VM)

This example counts the number of values in the first field of the variable menuitems.

There is a closely related function named COUNT which simply counts the delimiters:

number = COUNT(string, delimiter)

Usually, DCOUNT returns a number that is one greater than that COUNT.

FIELD

FIELD extracts a component of a delimited string. This isn’t usually used for extracting fields, values,
and sub-values as the language provides for direct extraction and assignment of these elements.
However, we are frequently confronted by strings delimited by other characters.

For example, a compound key may have the structure:

plant * model no * date

e.g. 123*A-4567-IJK*15096

Each of these components may have variable length (although date should be stable at 5 characters for
some time to come), so we cannot extract by position. This is where we use the FIELD function. This has
the following syntax:

component = FIELD(string, delimiter, occurrence {, count})

Therefore to extract each of the components of the variable ‘key’, we would use:

plant = FIELD(key, '*', 1) returns '123'
modelno = FIELD(key, '*', 2) returns 'A-4567-IJK'
pdate = FIELD(key, '*', 3) returns 15096

112

Note that the strings returned by the field statement exclude the delimiter – unless more than one field
is returned:

plantmodel = FIELD(key, '*', 1, 2) returns '123*A-4567-IJK'

Similar functionality can be achieved by using a group extraction conversion in an OCONV function:

PROGRAM TEST
key = '123*A-4567-IJK*15096'
plant = FIELD(key, '*', 1)
modelno = FIELD(key, '*', 2)
pdate = FIELD(key, '*', 3)
plantmodel = FIELD(key, '*', 1, 2)
pm2 = OCONV(key, 'G0*2')

CRT 'Plant = ':plant
CRT 'Model = ':modelno
CRT 'Pdate = ':pdate
CRT 'PlantModel = ':plantmodel
CRT 'PM2 = ':pm2

END

RUN BP TEST
Plant = 123
Model = A-4567-IJK
Pdate = 15096
PlantModel = 123*A-4567-IJK
PM2 = 123*A-4567-IJK

FIELD has two associated functions – COL1() and COL2() – which return the character positions
immediately prior to (COL1()) and immediately following (COL2()) the extracted string. These are useful
for extracting the strings prior to and/or following the extracted field:

key = '123*A-4567-IJK*15096'
modelno = FIELD(key, '*', 2)
priorstring = key[1,COL1()]
followstring = key[COL2(), LEN(key)]

See the online help for more information.

ICONV / OCONV

ICONV and OCONV are transformation functions – ICONV converts data to internal format, while OCONV
converts data to external format. The ‘I’ and the ‘O’ stand for input and output, representing the type of
conversion that takes place at these times. An input conversion will be done at the time of data input,
and converts data from external to internal format. An output conversion will be done prior to display,
and converts data from internal to external format.

Dates and times are obvious examples of data with differing input and output representations, but any
data may have conversions applied using these functions. Some examples are shown below:

113

Conversion Result
x = OCONV(15100, 'D') 04 MAY 2009
x = ICONV('4 MAY 2009', 'D') 15100
x = OCONV(32000, 'MTS') 08:53:20
x = ICONV('14:20', 'MTS') 51600
x = OCONV('SAMPLE TEXT', 'MCL') sample text
x = OCONV('sample text', 'MCU') SAMPLE TEXT
x = OCONV('SAMPLE TEXT', 'MCT') Sample Text
x = ICONV(123.456', 'MR33') 123456
x = OCONV(123456, 'MR22,$') $1,234.56

See ‘Conversion Codes’ in the online help for more information on possible conversions.

LOCATE

LOCATE is used for finding a value within a delimited string. LOCATE is frequently used where a variable
contains sets of related data.

The basic concepts of the LOCATE statement are:

➢ A search for a string is made through the specified part of a delimited variable returning:

○ whether the string was found

○ the position in the variable that the variable occupies, or would occupy if it existed

➢ THEN or ELSE clauses are executed depending on whether the string was found.

SD allows several variants for the syntax of the LOCATE statement. The variant shown here is the
UniVerse version. This requires a MODE setting in the program:

$MODE UV.LOCATE
LOCATE string IN dyn.array {<field {,value}>} {BY order} SETTING pos {THEN statements } {ELSE
statements}

The $MODE statement need only be declared once in the program. Alternatively, it can be specified in a
$BASIC.OPTIONS item in the programs file, or in the VOC of the account.

Say we want to search through the days sales and return the value of sales by country.:

OPEN 'SALES' TO sales ELSE STOP 201, 'Sales'
countries = ''
SELECT sales
eof = @FALSE
LOOP
 READNEXT sales.id ELSE eof = @TRUE
UNTIL eof DO
 READ sales.vec FROM sales, sales.id ELSE sales.vec = ''
 sales.ctry = sales.vec<SL.CTRY>
 IF sales.ctry = '' THEN sales.ctry = 'GB'
 sales.value = sales.vec<SL.VALUE>
 IF sales.ctry AND sales.value THEN
 LOCATE sales.ctry IN countries<SS.CTRY> BY 'AL' SETTING cpos THEN
 countries<SS.CTRYVALUE, cpos> += sales.value
 END ELSE
 INS sales.ctry BEFORE countries<SS.CTRY, cpos>
 INS sales.value BEFORE countries<SS.CTRYVALUE, cpos>
 END
 END
REPEAT

114

This code fragment builds the dynamic array countries by searching for the country identifier in the
relevant field of the dynamic array. This search uses an ascending left-justified sort order (i.e.
alphabetic). If the country already exists, then the position of the country in the field is returned in
cpos, and the value of the sale is added to the existing sales values for that country in the appropriate
field. If the country does not exist, then cpos contains the location within the dynamic array where it
should be inserted, and both the country identifier and the sales value are inserted into the dynamic
array.

Note that for this code fragment to work, there needs to be an $INCLUDE statement that defines the
SL.CTRY, SL.VALUE, SS.CTRY and SS.CTRYVALUE constants.

LOCATE can also be used without a sort order. In this case, the LOCATE portion of the above code fragment
would look like:

LOCATE sales.ctry IN countries<SS.CTRY> SETTING cpos ELSE
 countries<SS.CTRY, cpos> = sales.ctry
END
countries<SS.CTRYVALUE, cpos> += sales.value

This code is a bit simpler because it doesn’t have to insert values into the dynamic array. If the country
is found in the dynamic array, then all that needs to happen is to add the sales value to the appropriate
position. If the country is not found, then the value returned by cpos is at the end of the existing data –
therefore, you can simply assign the country to that position and add the sales data. Because the sales
data is added to a position in the dynamic array whether the country is found or not, this is removed
from the locate statement logic and made an unconditional statement.

Note the following points about the use of LOCATE:

➢ Searching within a dynamic array will slow down as the array size gets larger. For this reason,
avoid building large lists if possible.

➢ A sorted list will be more efficient than an unsorted list. This is because once the location of the
target is found (whether or not it currently exists), searching will stop. However, with an
unsorted dynamic array, searching needs to continue right through the list to determine whether
it is present in the list.

➢ LOCATE finds an entire value within the dynamic array. If you want to find part of a string, then
you need to use a different function.

Now, while the above example usage of LOCATE may be a reasonable demonstration of using LOCATE, it is
not an efficient piece of code. This is because the LOCATE will run for every item in the sales file. This is
quite unnecessary – and inefficient. Consider the following alternative:

115

OPEN 'SALES' TO sales ELSE STOP 201, 'Sales'
EXECUTE \SSELECT SALES BY CTRY\
countries = ''
sales.value = 0
sales.ctry.prev = ''
eof = @FALSE
LOOP
 READNEXT sales.id ELSE eof = @TRUE
UNTIL eof DO
 READ sales.vec FROM sales, sales.id THEN
 sales.ctry = sales.vec<SL.CTRY>
 IF sales.ctry = '' THEN sales.ctry = 'GB'
 IF sales.ctry NE sales.ctry.prev THEN GOSUB addctry
 sales.value += sales.vec<SL.VALUE>
 END
REPEAT

IF sales.value THEN GOSUB addctry
*
RETURN

addctry:
IF sales.value THEN
 countries<SS.CTRY, -1> = sales.ctry.prev
 countries<SS.CTRYVALUE, -1> = sales.value
END
sales.value = 0
sales.ctry.prev = sales.ctry
*
RETURN

This code fragment does not use LOCATE at all, but will build the same dynamic array of sales by
country. The code works by sorting the data first, and then loops through the data accumulating the
sales figures. The accumulated data is only added to the dynamic array when the country changes, or
on final exit from the loop.

Now, say the dynamic array that is created by this code is saved to a sales summary file using a key of
the internal date value. The following code fragment shows LOCATE being used to query the item and
return the value of sales for a given country:

PROMPT ''
OPEN 'SALES.SUMMARY' TO sales.summary ELSE STOP 201, 'Sales.summary'
LOOP
 CRT 'Enter date: ':
 INPUT sdate
 IF (sdate = '') OR (UPCASE(sdate) = 'X') THEN EXIT
 CRT 'Enter country: ':
 INPUT ctry
 IF (ctry = '') OR (UPCASE(ctry) = 'X') THEN EXIT

 idate = ICONV(sdate, 'D')
 IF (idate = '') OR NOT(NUM(idate)) THEN
 CRT 'Invalid date'
 CONTINUE
 END
 sdate = OCONV(OCONV(idate, 'D'), 'MCT')
 READ sales.vec FROM sales.summary, idate ELSE
 CRT 'Sales data for ':sdate:' not on file'
 CONTINUE
 END

 LOCATE ctry IN sales.vec<SS.CTRY> SETTING cpos THEN
 sales.value = sales.vec<SS.CTRYVALUE, cpos>
 END ELSE
 sales.value = 0
 END
 sdate = OCONV(OCONV(idate, 'D'), 'MCT')
 CRT 'Sales for ':sdate:' were ':OCONV(sales.value, 'MR2,')
REPEAT

116

This program gets a date and a country from the user, then reads the summary item for that date. If no
data exists for that date, then an error message is displayed, and the CONTINUE statement causes the
program to start another LOOP. If data is found, then the country is located within the dynamic array, and
the matching sales value returned. Finally, the sales value for the country for that date is displayed.

Note that the date value has some interesting conversions in this program. It is initially converted to an
internal format, then the internal date value has a double output conversion applied to it. The first of
these conversions converts the internal value to a standard date string (e.g. 08 MAR 2010), while the
second converts this to a mixed case string (08 Mar 2010). This ensures consistency of display of date
values.

As LOCATE is such an important statement within the multi-value databases, we’ll give another example
of its usage:

Say we have a banking application. Account balances are held in file ACCBALS. This file records the
account balance of an account on any day that a transaction occurs. In addition, an account balance will
be stored in the file on the last day of the month regardless of whether any transaction has occurred
during the month. Our problem is: How do we efficiently find the account balance on any given day?

An account that is used daily will have as many account balances stored as there are (working) days in
the month. An account that has no transactions during the month will only have a single account
balance stored for the month.

The brute force method of getting the account balance is simply to attempt to read the account balance
for the given day. If the item doesn’t exist, then step back a day at a time until an account balance is
found. The problem here is that we may need to attempt 30 reads from the file before we find the
balance. This is not efficient.

A more efficient method involves indexing the monthly transactions. Let’s set this out in a bit more
detail:

The ACCBALS file has the following structure:

ID: account*date e.g. 12345678*15317
F1: account balance e.g. 1534682

The date in the account balance is 7 December, 2009. We know there will also be an item in the file
with an ID of 12345678*15310 (being 30 November, 2009).

We also have an index file named ACCBALS.NDX. This has the following structure:

ID: account*yyyymm e.g. 12345678*200912
F1: mv-list of dates e.g. 15317]15314]15310

Note that the last date in the list is actually the November month-end date. The closing square brackets
(]) represent value marks. The three dates shown are 7 December, 4 December, and 30 November.

117

When a transaction occurs, the application maintains the ACCBALS.NDX file, recording the dates on which
new balances are written to the ACCBALS file. The month-end process has to create the index item for the
next month and seed it with the date of the month-end just past.

Now, let’s see how to use this structure to obtain the account balance:

PROMPT ''
OPEN 'ACCBALS' TO accbals ELSE STOP 201, 'Accbals'
OPEN 'ACCBALS.NDX' TO accbals.ndx ELSE STOP 201, 'Accbals.Ndx'
LOOP
 CRT 'Enter date: ':
 INPUT sdate
 IF (sdate = '') OR (UPCASE(sdate) = 'X') THEN EXIT
 idate = ICONV(sdate, 'D')
 IF (idate = '') OR NOT(NUM(idate)) THEN
 CRT 'Invalid date'
 CONTINUE
 END

 CRT 'Enter account: ':
 INPUT account
 IF (account = '') OR (UPCASE(account) = 'X') THEN EXIT

 ndxid = account:'*':OCONV(idate, 'DY'):OCONV(idate, 'DM') 'R%%'
 READ ndx.rec FROM accbals.ndx, ndxid ELSE
 CRT 'This account was not open on this date'
 CONTINUE
 END

 LOCATE idate IN ndx.rec<1> BY 'DR' SETTING datepos ELSE NULL
 baldate = ndx.rec<1, datepos>
 IF baldate THEN
 accdate = account:'*':baldate
 READV balance FROM accbals, accdate, 1 THEN
 CRT 'Accont balance was: ':OCONV(balance, 'MR2,$'
 END ELSE
 CRT 'Balance not found'
 END
 END ELSE
 CRT 'Index file is corrupt'
 END
REPEAT

This requires two reads to determine the account balance – regardless of the date requested. The first
read gets the index item, while the second read gets the account balance.

Let’s run through the code:

➢ We enter a date – let’s say it is 14 December, 2009. This is internal date 15324. In practice, we
would need to validate this date to ensure it is not in the future

➢ We enter an account – let’s say it is: 123456. In practice, this would need some further
validation

➢ We generate an ID for the index file. This is: 123456*200912

➢ We read the index item. This is as shown on the previous page

➢ We LOCATE the entered date in the index item. This returns position 1 because this is the position
that we would need to insert the entered date (15324) to maintain the sequence in descending
order

118

➢ We generate the ID for the ACCBALS file based on the account number and the date in the first
position in the index file. This would be: 123456*15317

➢ We read and display the balance from the ACCBALS file.

Let’s say the date entered was the 2nd of December. This has an internal value of 15312.

If we LOCATE this date in our index item, the position returned is 3. The date at position 3 is 15310
which is November 30 – the previous month-end value.

Note that in this usage of LOCATE, it doesn’t actually matter whether we find the value in the list or not.
Therefore, we simply set the ELSE action to NULL.

This banking application example is a typical usage of LOCATE. Of course, this only shows one part of
the usage within the application – there will be an equivalent usage of LOCATE during the maintenance of
the index item so that the index item is always in sorted order.

FIND

FIND is closely related to LOCATE. It finds a data element within a dynamic array. However, it does so in a
different manner than LOCATE:

➢ LOCATE searches within one dimension of a dynamic array, and returns a position for the search
string whether or not it is found. THEN and/or ELSE statements are executed depending on whether
the string was found.

➢ FIND searches in one, two, or three dimensions – depending on the number of variables specified
– and returns the position of the string in that number of dimensions. THEN and/or ELSE
statements are executed depending on whether the string is found.

To make things a little clearer: FIND returns the position of the string in 1, 2, or 3 dimensions. In
contrast, LOCATE only ever returns the position of the string within a single dimension of the dynamic
array.

The syntax for FIND is:

FIND string IN dyn.array {,occurrence) SETTING field {,value {,subvalue}} {THEN statements } {ELSE
statements}

As with LOCATE, the search string should make up the entire field, value, or subvalue. Unlike LOCATE, the
values returned do not represent the position in the dynamic array where the string should be inserted –
they only represent the string’s actual position.

Warning: If the string is not found, then the values of field, value, and subvalue are not changed.
Therefore, you cannot assume that the presence of data in these variables indicates that the string has
been found – unless the variables were empty before the FIND statement was executed.

119

Program control structures

SDBasic supports variants on the common program control structures. In many cases, the SDBasic variants
are more flexible than those found in languages such as Visual Basic, or C/C++.

IF-THEN-ELSE

SD supports both single and multi-line versions of IF statements:

IF condition {THEN statement} {ELSE statement}

IF condition {THEN
 statements
END} {ELSE
 statements
END}

In either construct, at least one of the THEN or ELSE branches must exist. This means that you can write
statements such as:

IF ok ELSE CONTINUE

While this is a perfectly valid statement, it is difficult to read. Most people logically expect a THEN
condition as the primary branch of an IF statement, and would find the following statement easier to
read:

IF NOT(ok) THEN CONTINUE

Multi-line IF statements must have an END terminating each block of conditional statements:

IF condition THEN
 statements
END

The conditions shown in the examples use Boolean values. SD takes any non-null, non-zero value to be
true, and null or zero to be false. Therefore, if the variable ok shown in the example above contained
the value ‘Y’, then this would be true16, whereas if it contained an empty string, then this would be
false. Warning: If the variable contained ‘N’, then this would also evaluate to true.

Boolean tests are good for evaluating the presence or absence of data. They should not be used for
testing between two different data values. In that case, use a construct like:

IF UPCASE(answer) = 'Y' THEN
 statements
END ELSE
 statements
END

Alternatively, you could convert the original data to a Boolean value:

ok = (UPCASE(answer) EQ 'Y')
IF ok THEN ...

16 Note that some multi-value databases require Boolean values to be strictly numeric or null. Therefore, a value of ‘Y’
will result in a non-numeric value error, with zero assumed – i.e. false.

120

CASE

CASE statements provide an alternative method of branching for conditional execution. While IF-THEN-

ELSE statements provide a two-way branch (or more if conditions are nested), CASE statements allow
multi-way branching. The basic format of the statement is:

BEGIN CASE
 CASE condition-1
 statements
{ CASE condition-2
 statements}
{ CASE condition-n
 statements }
{ CASE 1
 statements }
END CASE

The statement begins with the BEGIN CASE declaration, and ends with the END CASE declaration. In
between these two declarations, there are as many CASE conditions as required.

In operation, code execution in a CASE statement always takes the first condition that evaluates to TRUE.
Once that conditional block of statements has been executed, all the remaining cases are skipped and
execution continues with the statement immediately following the END CASE statement.

Optionally, you can include a CASE 1 condition. This condition always evaluates as TRUE and therefore
acts as a default execution branch (or ELSE clause).

Note the following points about CASE statements:

➢ The conditions do not need to be related to each other – although they often are. This is in
contrast to the SELECT CASE statements in some other languages that can only branch on the value
of a single variable

➢ If no condition is matched, then execution will continue with the first statement following END
CASE

Consider the following code fragment:

 cntcrlf = COUNT(descdata, CR:LF)
 cntcr = COUNT(descdata, CR)
 cntlf = COUNT(descdata, LF)

 BEGIN CASE
 CASE cntcrlf EQ cntcr AND cntcrlf EQ cntlf; fdelim = CR:LF
 CASE cntcr GT cntlf; fdelim = LF
 CASE cntlf GT cntcr; fdelim = CR
 CASE 1; fdelim = ''
 END CASE

This code counts the number of carriage returns and line feeds in the variable descdata, then assigns
the variable fdelim on the basis of these counts. Although a CASE 1 condition is present, this should be
impossible to reach.

121

Loops

Conditional loops

The basic structure of a conditional loop is:

LOOP
 {statements}
{WHILE | UNTIL condition {DO}}
 {statements}
REPEAT

The DO keyword is not required in SD, but is required by other multi-value databases, and so is shown
here for compatibility.

The above structure shows two blocks of optional statements. The first set of optional statements will
always be executed within the loop. However, the second set will only be executed when the condition
statement allows.

A typical usage of this structure is in the sequential processing of records in a file:

EQUATE CUST.SURNAME TO 4
EQUATE CUST.FIRSTNAME TO 5
OPEN 'CUSTOMERS' TO customers ELSE STOP 201,'Customers'

eof = @FALSE
SELECT customers
LOOP
 READNEXT custid ELSE eof = @TRUE
UNTIL eof DO
 READ custrec FROM customers,custid THEN
 CRT custrec<CUST.FIRSTNAME>:' ':custrec<CUST.SURNAME>
 END
REPEAT

The assignment of the CUST.FIRSTNAME and CUST.SURNAME references, and the opening of the
CUSTOMERS file are shown for completeness.

This program fragment works as follows:

➢ The SELECT statement selects the customers file and returns a select list for processing

➢ The READNEXT statement reads the next customer id from the select list. If there are no more
items in the select list then the eof variable is set to @TRUE

➢ The UNTIL clause tests the value of the eof variable. If eof is @FALSE, then processing moves to
the next part of the loop. If eof is @TRUE, then loop processing ends, and processing continues
with the statement following REPEAT

➢ The inner part of the loop reads the customer record, and displays the customer’s firstname and
surname

➢ When the REPEAT statement is encountered, processing returns to the LOOP statement, and the
next customer id is read from the select list.

Loops can also be written with only one internal block of statements:

122

ii = 0
LOOP
 ii += 1
 more statements
UNTIL ii GE maxii DO REPEAT

ok = @TRUE
LOOP WHILE ok DO
 more statements
REPEAT

ok = @TRUE
LOOP
 more statements
WHILE ok DO REPEAT

Note that the WHILE/UNTIL conditions may occur at any point during the loop – unlike some other
languages that require WHILE conditions to be placed at the top of the loop, and UNTIL conditions at the
end. Similarly, you may have more than one WHILE/UNTIL conditions within a loop – although such
structures may be difficult for others to read.

They can also be written without any WHILE/UNTIL conditions:

SELECT customers
LOOP
 READNEXT custid ELSE EXIT
 READ custrec FROM customers,custid THEN
 CRT custrec<CUST.FIRSTNAME>:' ':custrec<CUST.SURNAME>
 END
REPEAT

In this case, the EXIT statement is used to terminate the loop when the list of customer ids has been
exhausted. More information on the EXIT statement will be given shortly.

For-Next loops

If you know the number of loops that you require, you can use a FOR-NEXT loop rather than testing a
condition on every loop. The basic structure of FOR-NEXT loops in SD is similar to that in other
languages, but does have some variations:

FOR var = start TO end { STEP stepsize }
 statements
NEXT var

If STEP is omitted, then ‘stepsize’ is assumed to be 1.

For example:

IF st GT '' THEN
 dc = DCOUNT(st, @AM)
 FOR ii = 1 TO dc
 CRT msgs<ii>
 EXECUTE st<ii> CAPTURING junk
 NEXT ii
END

In this example, the variable st may contain a series of executable statements. First, the variable is
tested to see if it contains any data. If so, the statements are counted, and a loop started which executes
each statement and displays a message associated with each statement.

123

SD also allows WHILE and UNTIL statements to be included in the FOR-NEXT loop. Consider the following
program:

PROGRAM TEST
kk = 0
FOR ii = 1 TO 4
 FOR jj = 1 TO 6
 kk = ii * jj
 WHILE kk LE 12
 CRT kk 'R#6':
 NEXT jj
 CRT
NEXT ii
STOP
END

The output from this program is:

RUN BP TEST
 1 2 3 4 5 6
 2 4 6 8 10 12
 3 6 9 12
 4 8 12

In this case, the inclusion of the WHILE clause has made the display of the number conditional on its
value.

Recent versions of SD have two new syntax options for the FOR-NEXT loop:

FOR var = value1 {,value2 ...}
 statements
NEXT var

and:

FOR EACH var IN string
 statements
NEXT var

The first of these two new variants allows you to specify a list of values to use in the FOR-NEXT loop. The
second allows you to use the values contained in a dynamic array within the loop. See the online help
for more information on these two variants.

Some programs may be written to use the final value of the index variable after the loop has
terminated. For example:

PROGRAM TEST
FOR ii = 1 TO 5
 CRT ii
NEXT ii
CRT 'Final value is ':ii
END

This produces the output:

RUN BP TEST
1
2
3
4
Final value is 4

124

Some other multi-value databases may display 5 as the final value. SD can mimic this behaviour by
using the compiler mode FOR.STORE.BEFORE.TEST. This could be included directly in the program or stored
in a $BASIC.OPTIONS item either in the program file or in the account VOC:

PROGRAM TEST
$MODE FOR.STORE.BEFORE.TEST
FOR ii = 1 TO 5
 CRT ii
NEXT ii
CRT 'Final value is ':ii
END

RUN BP TEST
1
2
3
4
Final value is 5

While it is possible to make SD emulate this behaviour, you should really question whether this is
sensible. The index value of a FOR-NEXT loop only has meaning within the loop. You should not rely on
its value after loop termination. It isn’t difficult to write your code in such a manner that you don’t have
to worry about this difference in behaviour between multi-value systems.

EXIT and CONTINUE

EXIT and CONTINUE statements may be used to modify the behaviour of both conditional loops and FOR-

NEXT loops.

➢ EXIT causes the loop to terminate.

➢ CONTINUE skips the remaining statements in this loop and starts a new loop

Example usage of both EXIT and CONTINUE is shown below:

SELECT customers
LOOP
 READNEXT custid ELSE EXIT
 READ custrec FROM customers,custid THEN
 IF custrec<CU.ACTIVE> NE 'Y' THEN CONTINUE
 GOSUB processcust
 END
REPEAT

In this loop, if there are no more customer id’s to process, then the EXIT statement will cause the loop to
terminate. Valid customers are checked to see if they active. If they are not active, then the CONTINUE
statement causes processing to skip the processing of the customer record and jump to the REPEAT
statement.

Subroutines

Subroutines are a means of breaking your program into small blocks that:

➢ allow you to structure to your program

➢ encourage re-use of code sections.

125

The key concepts of a subroutine are:

➢ it is a block of code that carries out a specific action or set of actions

➢ it is called from elsewhere in the program via the GOSUB statement for internal subroutines or the
CALL statement for an external subroutine

➢ once processing of the subroutine is complete, control returns to the statement immediately
following the calling statement.

Subroutines may call other subroutines, which in turn may call other subroutines. There are limits to
the depth of such nesting (the default setting is 1,000 subroutine calls), but you are unlikely to reach
them unless an error of program logic causes recursive or circular subroutine calls.

Program structure

An example of structured programming is shown in the loop above. What we see is a relatively small
block of code, the purpose of which is readily apparent.

In contrast, consider what would happen if we included the customer processing code inside the loop.
Say the code for the customer processing code was 200 lines long. In that case, we would not be able to
quickly see the start and end points of the loop, and we would probably lose track of flow of logic.

Well structured programs usually have logic flows that look like:

GOSUB initialise
GOSUB getuserresponsesmsg); * Set colours
END ELSE
 emsg = 'Error - Foreground colour same as background colour'
END

IF emsg GT '' THEN; * Errors encountered
 CRT emsg; * Display error message
 GOSUB showusage
 STOP
END
*
RETURN

The above code fragment calls the internal subroutine getcolournum twice, and the external
subroutine SY.SET.COLOUR once. Both of these subroutines are also called from elsewhere in the
program, and the getcolournum subroutine itself calls another external subroutine:

getcolournum:
*
CALL SY.GET.AT.COLOUR.NUM(thiscolour, colournum, emsg)

IF emsg GT '' THEN; * Colour not found - error message
 CRT emsg
 GOSUB showusage
 INPUT pause,1
 STOP
END
*
RETURN

126

Internal subroutines

Internal subroutines are defined within the main body of the program. They start with a label that
identifies the subroutine, and end with a RETURN statement. Labels are normally17 an alphanumeric
string followed by a colon (:), or a number (which may optionally be followed by a colon). For
example:

initialise:
 statements
RETURN

or:

1000
 statements
RETURN

You can put a comment on the same line to identify the purpose of the subroutine if it is not
immediately apparent:

1000 ;* Initialise variables
 statements
RETURN

The above subroutines would be called with the following statements:

GOSUB initialise

GOSUB 1000

External subroutines

External subroutines are stored outside the main program – they are program modules in their own
right. This means that external subroutines may be called by any program, whereas an internal
subroutine can only be called from within its parent program.

External subroutines have another distinguishing characteristic – they can be defined to take a list of
parameters that define their action. In contrast, internal subroutines make use of the same set of
variables that are used by the parent program.

An external subroutine begins with the SUBROUTINE declaration, and ends with a RETURN statement.

SUBROUTINE subname{(parameter {,parameter ...})}
 statements
RETURN

For example:

17 A third label format is also available. See the online help for more information.

127

SUBROUTINE SY.GET.SETTING(ctrldata, identifier, settings, found)
* -- *
*
* Copyright 2008 Rush Flat Software
*
* Version: 1.0.0
* Author : BSS
* Created: 20 Mar 2006
* Updated: 20 Mar 2006
*
* Subroutine to search the passed control data for a particular
* identifier. Subroutine passes back the settings and found
* variables.
*
* Assumes that the control data is in the form:
*
* identifier1=settings1
* identifier2=settings2
* etc
*
* -- *
*
$CATALOGUE GLOBAL

progname = 'SY.GET.SETTING'

upctrldata = OCONV(ctrldata, 'MCU')
upidentifier = OCONV(identifier, 'MCU')
numctrllines = DCOUNT(ctrldata, @AM)

found = @FALSE
settings = ''
IF numctrllines GT 0 THEN
 ii = 0
 LOOP
 ii += 1
 UNTIL ii GT numctrllines OR found DO
 thisline = ctrldata<ii>
 upthisline = OCONV(thisline, 'MCU')
 temp = TRIM(FIELD(upthisline, '=', 1))
 IF temp = upidentifier THEN
 settings = TRIM(FIELD(thisline, '=', 2))
 found = @TRUE
 END
 REPEAT
END
*
*
RETURN
*
* -- *
*
END

And this subroutine would be called as follows:

identifier = 'colours'
CALL SY.GET.SETTING(sysctrl.userdata, identifier, colours, found)
colours = OCONV(colours, 'MCU')

So, if the control data that is passed to the subroutine looks like:

Colours=darkblue,yellow
NormCols=132
NormRows=35
ExtCols=160
ExtRows=40
ScrMode=Normal

then, the above call would return the string ‘darkblue,yellow’ in the variable colours, and @TRUE in the
variable ‘found’.

128

Let’s go through the subroutine and call in a bit more detail:

➢ The subroutine was declared with the SUBROUTINE statement, and the declaration contained four
variables to be passed to or from the subroutine.

➢ The subroutine contained a short description of what it does, followed by the actual code. This
description could have been more explicit in the values that need to be passed to the subroutine,
and those that will be returned.

➢ This code ended with a RETURN statement.

➢ The call to the subroutine passed four variables as part of the call. Note that the names of these
variables do not have to match the names declared in the subroutine code. Inside the subroutine,
the passed variables take on the names declared in the subroutine heading. Therefore, the
variable sysctrl.userdata that is passed to the subroutine is referred to as ctrldata inside
the subroutine.

➢ While the description implies that you should pass ctrldata and identifier, and the
subroutine will pass back settings and found, this is a human interpretation of what happens.
The subroutine itself makes no distinction between the variables in the declaration. If a variable
declared in the subroutine header is changed in the subroutine, it will be passed back in its
changed state. Therefore, if the subroutine changed the variable identifer to the literal value
‘junk’, then the value ‘junk’ would be available to the calling program when control returns
there.

This last point is quite important. You need to be clear about the way subroutines change the variables
passed to them. There are various strategies for ensuring that some variables are not changed by the
subroutine:

➢ Pass a copy of the variable to the subroutine:

temp = sysctrl.userdata
CALL SY.GET.SETTING(temp, identifier, colours, found)

➢ Pass the variable by value. This ensures that only the value of the variable is passed to the
subroutine – not the variable itself. To pass the variable by value, enclose the variable in
parentheses in the the call:

CALL SY.GET.SETTING((sysctrl.userdata),identifier,colours,found)

➢ Define the subroutine parameters as being passed by value. This ensures that the variable
passed to the subroutine will not be changed. To declare the variable as being passed by value,
enclose the variable in parentheses in the declaration:

SUBROUTINE SY.GET.SETTING((ctrldata),identifier,settings,found)

Which approach you use depends on what you expect the subroutine to do. Often, the point of the
subroutine is to change the value of the variable, in which case you don’t need the strategies outlined
above.

129

Local subroutines

SD has a third type of subroutine which has features of both internal and external subroutines:

➢ The subroutine is defined within the main body of the program

➢ The subroutine can be defined to take parameters

These subroutines are defined using the LOCAL keyword, and have an END statement after the RETURN:

LOCAL SUBROUTINE subname{(parameter {,parameter …})}
 statements
 RETURN
END

Essentially, the RETURN statement terminates the SUBROUTINE declaration, while the END is required to
terminate the LOCAL declaration.

Local subroutines may also employ local variables – but these must be explicitly declared using the
PRIVATE keyword. Otherwise, variables in local subroutines are global in scope.

Local subroutines are called using the GOSUB statement.

PROGRAM TEST
dt = ''
st = '28/2/10'
GOSUB DATATYPE(st, dt)
CRT 'Datatype of ':st:' is ':dt

st = '123.45'
GOSUB DATATYPE(st, dt)
CRT 'Datatype of ':st:' is ':dt
CRT temp
STOP

LOCAL SUBROUTINE DATATYPE(datastring, datatype)
 PRIVATE temp, datetest
 temp = datastring
 CONVERT ',' TO '' IN temp
 datetest = OCONV(ICONV(temp, 'D'), 'D2/')
 IF datetest NE '' AND LEN(temp) < 6 THEN datetest = ''
 BEGIN CASE
 CASE temp = ''; * NULL is Text
 datatype = 'T'
 CASE INDEX(temp,' ',1); * At least one space
 datatype = 'T'
 CASE OCONV(temp,'MCA') NE ''; * Alpha is not null
 datatype = 'T'
 CASE NUM(temp); * Is numeric
 datatype = 'N'
 CASE datetest NE ''; * OCONV DATE is not null
 datatype = 'D'
 CASE 1; * Anything else = text
 datatype = 'T'
 END CASE
 RETURN
END
END

BASIC BP TEST
Compiling BP TEST

WARNING: TEMP is not assigned a value
0 error(s)
Compiled 1 program(s) with no errors

130

RUN BP TEST
Datatype of 28/2/10 is D
Datatype of 123.45 is N
00000109: Unassigned variable TEMP at line 10 of D:\SD\SDINTRO\BP.OUT\TEST

The above example shows how to define and call a local subroutine. It also shows how the PRIVATE
variables contained within the local subroutine are not available to the main program.

User Defined Functions

User defined functions are broadly similar to external subroutines (and like subroutines, can also be
defined as LOCAL). However, unlike subroutines, they use a general assignment syntax rather than a call:

result = MYFUNCTION(arg-list)

Like external subroutines, functions usually occupy their own operating system file, and have the
general form:

FUNCTION functionname{(parameter {,parameter …}) {VAR.ARGS}}
 statements
RETURN varname

For example:

FUNCTION SY.EXCELDATE(datestring)
*
* Version: 1.0.0
* Author : BSS
* Created: 08 Mar 2007
* Updated: 08 Mar 2007
*
* Copyright 2008 Rush Flat Software
*
* -- *
*
$CATALOGUE GLOBAL

 internaldate = ICONV(datestring, 'D')
 xldate = internaldate + 24837
RETURN xldate
*
END

This function takes a passed date in external format (e.g. 25 Apr 2009), and returns this as an Excel
date number.

To use the function in a program, we must define it so that the compiler knows this is a valid function
and can validate the number of arguments passed at compile time. We use the DEFFUN keyword to define
the function in a program:

PROGRAM TEST
DEFFUN SY.EXCELDATE(datestring)
testdate = '25 Apr 2009'
CRT SY.EXCELDATE(testdate)
END

And the output is:

RUN BP TEST
39928

Note that we have been able to call the function directly in the CRT statement, although a more normal
usage of this function may have been:

131

xdate = SY.EXCELDATE(testdate)

As noted above, SD allows functions to be defined locally within a program through use of the LOCAL
statement. See the subroutines section above for more information on this, or lookup LOCAL in the online
help.

The other twist provided by SD is to allow a variable number of arguments through use of the VAR.ARGS
keyword in the function definition:

FUNCTION FNTEST(arg1, arg2, arg3, arg4) VAR.ARGS
 x = ARG.COUNT()
RETURN x
END

This function has been defined to accept up to 4 arguments. However, all it does is return the count of
arguments passed to it. The following program shows this function in use:

PROGRAM TEST
DEFFUN FNTEST(arg1, arg2, arg3, arg4) VAR.ARGS
numargs = FNTEST('ABC')
CRT 'Number of arguments = ':numargs
END

RUN BP TEST
Number of arguments = 1

Note that if you wish to use functions with a variable number of arguments, the VAR.ARGS keyword
should be included in both the function definition and the DEFFUN declaration – although if you test this,
you can omit it from the function definition, but it must be included in the DEFFUN declaration.

As with subroutines, variables are passed to the function by reference. This means that changes to the
variables in the function will be carried back to the calling program. Note this is different from many
other computer languages which pass arguments to functions by value. You can use any of the
strategies outlined in the section on subroutines to pass the arguments as values.

Files

SD applications use files extensively. Therefore, it is vital to understand how to use files in SD.

In general, the processes involved in dealing with files are:

➢ opening the files

➢ selecting records in the files

➢ reading the records from the files

➢ writing records to the files

➢ closing files.

There are several related issues to consider also:

132

➢ error handling

➢ record locking

➢ handling special file types

The following sections will give a brief coverage of these issues.

Most file handling statements have an {ON ERROR statements} clause within them. These statements are
executed when a serious error condition is encountered in the file structure. As this clause is common to
most statements, it will be omitted in the following descriptions.

Likewise, most file handling statements have optional THEN and ELSE clauses. While these are noted as
being optional, in reality, they must have at least one of these clauses present.

In all cases, see the online help for more information.

Opening files

Files must be opened before they are available within an SD program. Opening the file associates the
file’s operating system filename with a variable within the program:

OPEN filename TO filevar {THEN statements } { ELSE statements }

The filename may contain a reference to a dictionary so that you can open the dictionary itself, or the
data portion of a multifile:

OPEN 'CUSTOMERS' TO customers ELSE GOTO fileopenerror

OPEN 'DICT','SALES' TO sales.dict ELSE GOTO fileopenerror

OPEN 'SALES','FY2009' TO sales ELSE GOTO fileopenerror

The dissociation of the database filename with the internal file variable means that you could use the
same file variable for multiple files (one at a time of course). In the multifile example given above, we
may have the year (say 2008) we wish to open in the variable fyear. Therefore:

fname = 'FY':fyear

OPEN 'SALES',fname TO sales ELSE GOTO fileopenerror

This is a particularly valuable technique for two reasons:

➢ It allows you to write generalised software that operates on a number of files. The physical file
reference that you provide to the software is converted to a file variable for the actual
operations.

➢ The error handling can be generalised. Once again, pass the error handler the name of the file in
a variable, and it can output an appropriate message.

133

The file variable is just another variable that should conform to SD naming rules. However, as file
variables have specific roles within SD, you should try to be consistent with your naming of file
variables. Some strategies are:

➢ Use the file name as the name of the file variable:

OPEN 'STAFF' TO staff ELSE ...

➢ Use a file variable that indicates purpose and source:

OPEN 'CUSTOMERS' TO cust.file ELSE ...

OPEN 'DICT','REPORTS' TO reports.dict ELSE ...

○ A common variant on this is to use ‘.f’ as a suffix (or ‘f.’ as a prefix) to denote a file
variable:

OPEN 'CUSTOMERS' TO customers.f ELSE ...

Consistency of naming file variables will aid subsequent programming enormously, as you don’t have
to continually check what name was given to each file.

The ON ERROR clause will only get executed if severe errors are encountered when opening the file. A
THEN clause will be executed if the file is opened successfully, while an ELSE clause will be executed if
the file cannot be opened. At least one of the THEN or ELSE clauses must be present.

Error handling

A common form of error handling on OPEN statements is simply to stop the program with an error
message. This is fine in simple applications, but is not appropriate in larger applications where the OPEN

error may occur deep in the application.

A typical example of this type of error handling is:

OPEN 'SALES' TO sales ELSE STOP 201, 'Sales'

201 refers to the error message number in the ERRMSG file. If the OPEN statement fails, then this produces
the following error message:

[201] 'Sales' IS NOT A FILE NAME

Importantly, the STOP statement actually stops the program, so this is a drastic form of error handling.
Ideally, we want to open files in a way that captures errors and gives a chance to handle them
appropriately. One way to do this is to wrap the standard OPEN statement in a custom subroutine (or
function) that allows you set the desired action when you call the subroutine, and it passes back
appropriate messages:

134

SUBROUTINE FILE.OPEN(filename, fileptr, errorlevel, etext)
**
* Bp File.Open - A subroutine to open files in a standardised manner.
*
* Copyright 2008 Rush Flat Software
*
* Author : BSS
* Created: 09 Aug 2008
* Updated: 06 Aug 2009
* Version: 1.0.1
*
* Pass : filename
* Return : fileptr, errorlevel, etext
*
* Errorlevel: 0 - No errors
* 1 - Errors encountered
* 2 - Severe error encountered
*
* --- *
*
$CATALOGUE GLOBAL

errorlevel = 0
etext = ''
fileopened = @FALSE

CONVERT ' ' TO '' IN filename
ofilename = filename

dictname = ''
IF INDEX(filename, ',', 1) THEN
 dictname = FIELD(filename, ',', 1)
 filename = FIELD(filename, ',', 2)
END

fileptr = ''
BEGIN CASE
 CASE (dictname EQ '') OR (dictname = filename)
 GOSUB opendata
 CASE dictname EQ 'DICT'
 GOSUB opendict
 CASE 1
 filename = dictname:',':filename
 GOSUB opendata
END CASE

RETURN
STOP
*
* --- *
*
opendata:
*
OPEN filename TO fileptr ON ERROR
 GOSUB openerror
 errorlevel = 2
END THEN
 fileopened = @TRUE
END ELSE
 GOSUB openerror
END

RETURN
*
* --- *
*
opendict:
*
OPEN 'DICT',filename TO fileptr ON ERROR
 GOSUB openerror
 errorlevel = 2
END THEN
 fileopened = @TRUE
END ELSE
 GOSUB openerror
END

RETURN

135

*
* --- *
*
openerror:
*
errorlevel = 1
errcode = STATUS()
CALL !ERRTEXT(etext, errcode)
etext = 'Err ':errcode:': Error opening file: ':ofilename

RETURN
*
* --- *
*
END

The FILE.OPEN subroutine gets the error description using the !ERRTEXT standard subroutine that is
supplied with SD. This subroutine converts error numbers (supplied by the STATUS() function) to
descriptive text.

Selecting data in files

Selecting data from a file is generally understood to mean selecting a set of the available records from a
given file. In the multi-value world, it has the added implication that the ID’s of the selected records
will be available in a list (a select-list).

There are two basic ways of creating a select-list – using an internal select, and using an external select.
An internal select is carried out within the BASIC program, while an external select is executed outside
the program.

Once the program has a select-list, it will usually loop through the ID’s in the list, and process the
associated records.

Internal select
An internal select has the syntax:

SELECT var {TO list-num}

The behaviour of this statement can be altered via a $MODE compiler directive to select to a list
variable18 rather than a list number. SD also has variants of the SELECT statement that always select to a
list number (SELECTN) or a list variable (SELECTV).

At this stage, the option to select to a list number or list variable will be ignored. This only needs to
occur if multiple select lists could be concurrently active. However, it is good practice to always select
to a list number/variable for two reasons:

18 The choice of whether to use list numbers or list variables is usually made on the basis on the developers background. If
they have come from a PICK background, they will usually choose list variables, while those from an Information
background will choose list numbers. They are functionally similar but have slight differences in usage.

136

➢ multiple select lists can be more easily handled when they occur; and

➢ to ensure that no active select lists are left behind by your programs.

This second point needs a bit more explanation. Consider the case where a program generates a select-
list, and does not associate it with a list number or variable. This means that it will be the default select
list. The program then begins processing the list, but stops before all items in the list are exhausted. The
remaining items in the list will remain active, and will be processed by any subsequent READNEXT
command. Further, the list can even continue to exist after the program terminates, and will be
processed by any subsequent SDQuery commands or programs.

In short, a default select-list that that has not been exhausted can cause programs or SDQuery commands
to behave in an unexpected fashion. To avoid the problems described above, always select to a list
number or variable.

The var that is selected by SELECT may be either the file variable of an open file, or a variable
containing a field-mark delimited list of record ID’s. In either case, an internal select simply selects all
records referenced by var into a select-list. The statement has no ability to select a subset of the
records, nor to sort them into any order. The order of the record ID’s in the list simply reflect the order
of the records in the file or variable.

SD has another variant of the SELECT statement which does a simple sort of the record ID’s (SSELECT).
However, as this sort is limited to a left-justified ascending sort order, this is of limited use.

The advantage of an internal select is that it is fast.

External select
An external select uses the SDQuery selection commands to select some or all of the record ID’s in a
given file. The command may also sort the records into a specific order.

SDQuery commands were covered in Part 1 of Getting Started in SD. This document will only cover the
means by which these commands are used within SDBasic.

The issue for SDBasic is how to run a SDQuery command (or any other command that is normally run
from the command line). This is done using the EXECUTE or PERFORM statements. EXECUTE has a number
of optional clauses which are not covered here – see the online help for more information.

EXECUTE command {CAPTURING display}

For example:

EXECUTE \SSELECT IRATES WITH YEAR EQ "2006"\ CAPTURING junk

This would return a select-list of record ID’s in the IRATES file where the year was 2006. It uses the
SSELECT command without specifying a sort order, so the record ID’s would be sorted into their ID order
– which in this case is ascending month order within the year.

If we run this command from the command prompt, we get:

137

:SSELECT IRATES WITH YEAR EQ "2006"
12 record(s) selected to list 0
::

The ‘CAPTURING junk’ part of the EXECUTE statement captures the message that is reported by SDQuery. This
stops the message from being displayed, and upsetting any screen formatting that you have.

Note that the command that is executed must be passed as either a quoted string, or as a variable. In the
above example, the backslash character (\) has been used to quote the string. The backslash is useful for
this purpose as it allows both single and double quotes to be used within the SDQuery command.

The same command could be executed using a variable as follows:

cmd = \SSELECT IRATES WITH YEAR EQ "2006"\
EXECUTE cmd CAPTURING junk

Any of the SDQuery selection commands can be used in this manner. The usual ones are SELECT, SSELECT,
and QSELECT. However, the stored list commands can also be used – e.g. GET-LIST.

The advantages of an external select are that it allows you to select a subset of records, and return the
list in a sorted order.

Which selection should I use?

In general:

➢ If you want to select most or all records in a file and the order of the records is not important,
then use an internal select

➢ If you want to select a small subset of records and/or you want the record ID’s in a specific
order, then use an external select.

Reading from files

Once you have a record ID, you can READ the associated record from the file:

READ var FROM filevar, record-id {THEN statements} {ELSE statements}

For example:

READ sales.vec FROM sales.summary, idate ELSE
 CRT 'Sales data for ':OCONV(idate, 'D'):' not on file'
END

This looks up data from the sales summary file which has a key of the internal date number. If the
record is not found on the file, then the ELSE clause is executed which displays an error message.

The file must have been opened before the READ statement is attempted. Note also that the READ
statement accesses the file variable – not the physical file name.

There are a number of READ statements:

➢ READV reads a single field from the record rather than the whole record. The syntax for this
statement requires that the field number be included.

138

➢ READL and READU read the whole record and place a lock on the record to prevent other users
from updating it. Record locking will be covered later under ‘multi-user issues’.

It is important to recognise that the READ statement will ALWAYS read the record – regardless of the
state of any record locks. If your application is only reading the record to obtain a value from the file,
then READ is appropriate. However, if the application is going to update the record, then you should use
the READU statement which applies an update lock to the record as part of the read process. This will be
covered in more detail later.

Getting the ID from the select list for the READ

The above two sections cover creating a select-list of ID’s, and then using an ID to read from the file.
However, we need an intermediate step to get an ID from the select-list for use in the READ statement.

The READNEXT statement takes an ID from a select-list and stores it in a variable:

READNEXT var {FROM list} {THEN statements}{ELSE statements}

For example:

EQUATE CUST.SURNAME TO 4
EQUATE CUST.FIRSTNAME TO 5
OPEN 'CUSTOMERS' TO customers ELSE STOP 201,'Customers'

eof = @FALSE
SELECT customers
LOOP
 READNEXT custid ELSE eof = @TRUE
UNTIL eof DO
 READ custrec FROM customers,custid THEN
 CRT custrec<CUST.FIRSTNAME>:' ':custrec<CUST.SURNAME>
 END
REPEAT

The READNEXT statement in the unconditional portion of the LOOP gets an ID from the select-list, and
assigns it to the variable custid. If there are no more ID’s in the list, then the statement assigns a value
of @TRUE to the variable eof.

Note that you can only read FORWARD through a select-list. You cannot back up through a select-list.
(There is no READPREV statement to get the previous item-id).

An alternative way of processing the select-list is to use READLIST statement to read the entire list into a
variable, and then process the variable:

SELECT customers
READLIST custlist THEN
 LOOP
 REMOVE custid FROM custlist SETTING delim
 READ custrec FROM customers,custid THEN
 CRT custrec<CUST.FIRSTNAME>:' ':custrec<CUST.SURNAME>
 END
 WHILE delim DO REPEAT
END

READLIST reads the entire select-list into a variable, while the REMOVE statement extracts the next part of
the dynamic array. See the documentation for more information.

139

Writing to files

Writing a record to a file uses the WRITE statement:

WRITE var TO filevar, record-id

The keyword ON may be used instead of TO.

For example:

WRITE sales.vec ON sales.summary, idate

Note the WRITE statement has no THEN or ELSE clauses.

If the record-id already exists in the file, then the existing record will be overwritten. Indeed, the WRITE
statement offers no way for the programmer to determine whether an item already exists. Any such
management of existing items must be done using the THEN or ELSE clauses of the READ statement.

There are also WRITE statements that match the variants of the READ statements:

➢ WRITEV writes a single field to the record rather than the entire record.

➢ WRITEU writes the whole record and maintains the record lock.

All of these WRITE statements will write the item regardless of the state of any record locks. See the
online help, or the ‘Multi-user issues’ section later in this document for more information.

Closing files

Multi-value systems do not usually need to explicitly close files. Nevertheless, there is a CLOSE
statement which will close the file – or remove the association between the physical file and the file
variable:

CLOSE filevar

Other methods of file handling

The file handling so far has dealt with files defined within the local account, or which have a Q-pointer in
the VOC pointing to the file in another account. In these cases, SD uses the data stored in the VOC entry to
find the location of the file in the file system.

But what if the file isn’t defined in the VOC? Then you can supply the path to the file directly:

OPENPATH pathname TO filevar {THEN statements} {ELSE statements}

This is similar to the OPEN statement19 except that you are supplying a pathname rather than an SD
filename. This method can be used to open both dynamic files and directory files in other SD accounts.
It can also be used to open other folders in the file system:

19 Pathnames can also be used within the OPEN statement, but only if an extended syntax is “allowed”. See the FILERULE
configuration parameter for more information.

140

OPENPATH 'C:\Temp' TO temp.folder THEN ...

You can also quickly read a single item in an operating system file (rather than opening the file and
then reading the item):

OSREAD var FROM path {THEN statements} {ELSE statements}

For example:

OSREAD txt FROM 'C:\TEMP\TEST.TXT' ELSE txt = ''

There is a corresponding OSWRITE statement to match OSREAD:

OSWRITE var TO path

Unlike the WRITE statement, you may not use the keyword ON instead of TO.

You can also read a text file sequentially – that is record by record or block by block by using the
sequential file processing commands. These include:

OPENSEQ pathname {THEN statements} {ELSE statements}

READSEQ var FROM filevar {THEN statements} {ELSE statements}

WRITESEQ var TO filevar {THEN statements} {ELSE statements}

READBLK var FROM filevar, bytes {THEN statements} {ELSE statements}

WRITEBLK var TO filevar {THEN statements} {ELSE statements}

READCSV FROM filevar TO var1, var2 etc {THEN statements} {ELSE statements}

WRITECSV var1, var2 etc TO filevar {THEN statements} {ELSE statements}

CLOSESEQ filevar

See the online help for more information on these statements.

Multi-user issue

SD is a multi-user database system. As such, there will be times when multiple users try to access or
update the same record at the same time. A good application will ensure that such contention issues are
handled in a standard manner that preserves data integrity while not inconveniencing users too much.
This is achieved through record locking.

Before looking closer at the individual locking statements, it is important to understand the following
points:

➢ Locking is maintained by the application – not by the database. If two different applications
access the same file, then it is up to the developer to ensure that the locking is consistent
between the applications

➢ Locking is (normally) advisory only – that is, the locking does NOT prevent applications from
reading or writing to the file – UNLESS those applications have been written to respect the
locks

141

➢ SD has a configuration parameter that changes this default behaviour. If the MUSTLOCK parameter
is set to a value of 1, then any attempt to write or delete an item from a program where the
program does not hold an update lock will result in a program abort. While use of this
configuration parameter enforces better structure within programs, it will probably break many
existing multi-value applications.

The practical implication of these points is that you should write all applications to use and respect
locks. This way, when new applications are added to the system, you can be certain that all applications
are handling locks correctly.

SD offers locking at two levels – whole file locking, and individual record locking. Given that locking
the entire file has potential to inconvenience many users, this option should be used with care.

When should locking be used

Any program that updates data files – or may update data files – should use some form of locking.
Even if the system is written as a single user application, it is still good practice to build in locking as
(a) this will make it easy to convert it to a multi-user application; and (b) it will maintain a single style
of coding between applications.

In some cases, you may also want to employ locking even when data is not being updated. For
example, you may want to report on the state of the system at a particular instant in time. To be sure
that the data is totally consistent for that instant, you may want to lock the entire file(s) for reporting.

Note that neither of these locking scenarios actually stops applications from reading or writing to the
file – a READ will ALWAYS read from the file, and a WRITE will ALWAYS write to the file. However, if
the application is written to test for locks (using READU), then the reads and writes will only occur in
accordance with those locks.

File locks

To lock an entire file, use the FILELOCK statement:

FILELOCK filevar {LOCKED statements}{THEN statements}{ELSE statements}

The LOCKED clause will be executed if another user already has a file lock or a record lock on any record
within the file. Unusually, the THEN and the ELSE clauses are completely optional, and neither need be
present.

The lock should be released once processing of the file is complete. This is done using either the
FILEUNLOCK or the RELEASE statements:

FILEUNLOCK filevar {LOCKED statements}{THEN statements}{ELSE statements}

RELEASE filevar

Note that this form of the RELEASE statement will release all locks associated with filevar – not just the
file lock. See the online help for more information.

The usage of these statements will be something like:

142

OPEN 'SALES' TO sales ELSE STOP 201, 'Sales'
err = @FALSE
FILELOCK sales LOCKED err = @TRUE
IF NOT(err) THEN
 ...
 process file here
 ...
 FILEUNLOCK sales
END

This example simply bypasses the file processing if a lock already exists on the file. In practice, error
handling should be more sophisticated than this.

Record locks

SD supports two types of record locks – read (or shared) locks, and update locks. This section will
mostly cover the use of update locks.

The purpose of an update locks is reasonably obvious – you place an update lock on a record when you
want to update the record. The purpose of the read lock is a little less obvious – its basic action is to
prevent an update lock from being applied. This allows an application to process the entire file without
any risk that another user will update it during the processing. See the Locks section in the online help
for more information on read locks.

The essential purpose of update locks is to allow the developer to structure the system so that multiple
users read and write data in a consistent fashion. What we want to avoid is something like:

User A reads record
User B reads record
User B updates record
User A updates record

This will leave the system looking the way that User A expects, but User B’s changes have been lost.
The use of record locking would have allowed the above situation to have been trapped and action
taken to avoid problems.

There are two basic approaches to the use of record locks. These approaches are sometimes termed
optimistic and pessimistic locking:

Under pessimistic locking, the record is locked at the time of the original read, and the lock is
maintained until the update has been completed. This ensures that no other user can obtain a lock on
the item until such time as the original user has updated or released the record. The downside of this
type of locking is that the lock may be maintained for a considerable period of time – at least the
duration of any amendments to the record, plus distraction time. Users have been known to go out for
lunch leaving a record locked on their screen – much to the annoyance of other users.

Optimistic locking works on the premise that in most cases, there will be no contention between users
for a particular record. Therefore, the record is only locked immediately prior to update. When this
occurs, the record on disk is compared with the original record. If the records are the same, then no one
else has updated the record, and it is safe to update the record. If the record has changed, then program
needs to offer choices about how to handle the situation.

143

The advantage of optimistic locking is that records are only locked for brief periods of time. The
disadvantage is that more programming is required to handle the situation where records have changed
between the original read and the read done immediately prior to update.

Pessimistic locking looks like:

READ record setting update lock
process record
WRITE record

Optimistic locking looks like

READ record
process record
READ record setting update lock
If the record is unchanged from the original READ then
 WRITE the updated record
Else
 do something else
END

An update lock is obtained by using the READU statement. This is a variant of the READ statement:

READU var FROM filevar, record-id {LOCKED statements} {THEN statements} {ELSE statements}

For example:

ok = @TRUE
READU cust.rec FROM customers, cust.id LOCKED
 ok = @FALSE
 EMSG = 'Record ':cust.id:' is locked by user ':STATUS()
END ELSE
 cust.rec = ''
END
IF ok THEN
 GOSUB updaterec
 WRITE cust.rec ON customers, cust.id
END

Or:

READ cust.rec FROM customers, cust.id ELSE cust.rec = ''
cust.rec.orig = cust.rec
GOSUB updaterec
ok = @FALSE
tries = 0
LOOP
 tries += 1
 READU cust.rec.curr FROM customers, cust.id LOCKED
 NAP 10
 END THEN
 ok = @TRUE
 END ELSE
 ok = @TRUE
 cust.rec.curr = ''
 END
UNTIL ok OR (tries GE 5) DO REPEAT
IF ok THEN
 IF cust.rec.curr EQ cust.rec.orig THEN
 WRITE cust.rec ON customers, cust.id
 END ELSE
 RELEASE cust.rec, cust.id
 EMSG = 'Record ':cust.id:' has been changed by another user'
 END
END ELSE
 EMSG = 'Could not obtain lock on record: ':cust.id
END

144

The first code fragment is an example of pessimistic locking. If the code cannot obtain the lock, then no
update takes place and an error message is returned.

The second fragment is an example of optimistic locking where the record is read from the file and
updated (in memory) before checking whether it is OK to write the record. Given that locks will only
be held momentarily in an optimistic locking scenario, the READU is placed in a short loop. If the record
is locked, then the process sleeps for 10 milliseconds before trying again. The process will loop in this
manner until it successfully reads the record, or it has five unsuccessful reads. Once a lock has been
obtained, the record that is read is compared with the one read prior to the update process. If the record
has not been changed, then the updated record is written to the file; otherwise the lock is released and
an error message returned to the user.

Note that any time that a lock is obtained, then it must be released. Locks can be released by:

➢ the RELEASE statement

➢ the WRITE statement (unless WRITEU is used which maintains the lock)

➢ terminating the program.

Failure to release locks could result in the system running out of locks in the lock table. To check the
number of locks available, type CONFIG from the command prompt, and check the value of NUMLOCKS.
The number of locks available to the system can be changed by using the Configuration Editor. See the
online help for more information.

145

SECTION TWO Getting Started With SD

Installation - Debian 12 with Gnome or Ubuntu 24.04
This chapter will document how to install SD on Ubuntu 24.04. Open a terminal window and type
“sudo apt update && sudo apt full-upgrade” to make sure that the OS software is current.

When the upgrade is finished, reboot and log in again. Open a terminal window and click the
hamburger menu icon (shown at left) on the right side of the title bar. Select “Preferences” from
the drop down menu. In the Preferences windows, click “Unnamed” on the left side panel.

As shown in the figure below, the “Initial terminal size:’” should be 120 columns by 36 rows. You may
also want to select the “Custom font:” check box and change the font size.

When you have made your changes, close the window by clicking the “X” in the upper right corner of
the window. Now reopen the terminal and you should see that the terminal window now has the
dimensions that you asked for.

In the open terminal type the following commands:

146

sudo apt install git
git clone https://github.com/stringdatabase/sdb64

The source code repository will be copied from the github server and will create the sdb64 directory
underneath your home directory.

Now type the following commands:

cd sdb64
./debian-installsd.sh

Press “y” and then “Enter” when asked “Continue?”
Enter your password when requested.
At the “<cr> to INSTALL “Q” to exit prompt just press “Enter”
At the “Restart computer now?” enter “y”.

When the computer has restarted, open a terminal. Enter “sd” . At the colon prompt:

Type “LISTF” to see a list of the files assigned to your user account.
Type “WHO” to see your user name.
Type “!pwd” to see where your personal account directory is located.
Type “OFF” to exit the database and return to the operating system prompt.

To log into the database as the administrator type “sudo sd” and enter your password when requested at
the operating system prompt. You must have ‘sudo’ priviledges on your computer to access the
administrator account.

Type “LISTF” to see a list of files assigned to the administrator account.
Type “WHO” and you will see that the name of the administrator account is “SDSYS’.
Type “!pwd” to see where where the SDSYS account directory is located.

147

As with the personal account, enter “OFF” to exit to the operating system prompt.

148

Installation on server without a GUI

SD can also be installed on the servers that do not have a graphical user interface (GUI). Debian 12,
Ubuntu 24.04 and Fedora 40 servers are supported.

The process is very similar to those discussed for the desktop versions that were covered in the
preceding Chapters. Once you have logged in you can issue the following commands to install SD.

Ubuntu 24.04 Server or Debian 12
sudo apt update && sudo apt full-upgrade
sudo apt install git
git https://github.com/stringdatabase/sdb64
cd sdb64
./debian-installsd.sh
sudo reboot
login
“sd” = user account “sudo sd” = admin account

149

Configuration
SD Configuration parameters are found in file /etc/sd.conf These values override the default values
defined in gplsrc\config.c.

 APILOGIN Ignor (0) or Require (1) User name and password on remote
api connection. If set to 0, we pull username, user id and group
id from peer in (start_connection). If these are populated, we
ignore the passed user name (either came in as a local user using
the API or as a remote user using ssh and the API). Either way we
have already gone through username and password authentication.
If 1 require valid user name and password to be passed in api
connection method.

 CREATUSR=n Allow create.account to create os user (dflt=1 yes, o=no)

 DEADLOCK=n Trap deadlocks?

 DEBUG=n Debug features enabled? (bit flags)

 FDS=n Set FDS limit (default is no limit)

 FLTDIFF=f Wide zero value

 GDI=n Select default API calls for printing

 GRPDIR Group Accounts default parent directory

 GRPSIZE=n Default group size when creating a dynamic file

 MAXIDLEN=63 Maximum record id len

 MUSTLOCK=1 Must hold update or file lock to write or delete record

 NETFILES=0 Allow remote files?

 0x0001 Allow outgoing NFS

 0x0002 Allow incoming Q_M_Net

 NUMFILES=n Maximum number of files open (all users)

 NUMLOCKS=n Maximum number of record locks

 OBJECTS=n Limit on loaded object code count (0 = no limit)

 OBJMEM=n Limit on locade object size (kb, 0 = no limit)

 SDCLIENT=n SDClient rules (0=all, 1=no call/exec, 2=restricted call)

 SDSYS=path SDSYS directory path

 SAFEDIR=1 Use careful update to directory files

 SORTMEM=n Threshold for disk based sort (units of 1kb)

 SORTWORK=path Pathname of sort workfile directory

 STARTUP=cmd Run command on starting SD

 TEMPDIR=path Pathname of temporary directory

 TERMINFO=path Pathname of terminfo directory

 TXCHAR=1 Enable ansi/oem character translation (default = 1)

150

 USRDIR User Accounts default parent directory

 YEARBASE=n Two digit year base (default = 1930)

Note Current system configuration values can be displayed with the CONFIG command.

:CONFIG
Virtual Machine Version Number 2.6-6
APILOGIN 1
CMDSTACK 99
CREATUSR 1
DEADLOCK 0
DUMPDIR
ERRLOG 50 kb
EXCLREM 0
FILERULE 0
FLTDIFF 0.00000000002910
FSYNC 0
GDI 0
GRPDIR /home/sd/group_accounts
GRPSIZE 2
INTPREC 13
JNLMODE 0
JNLDIR
LPTRHIGH 66
LPTRWIDE 80
MAXCALL 10000
MAXIDLEN 63
MUSTLOCK 0
NETFILES 0
NUMFILES 80
NUMLOCKS 100
NUMUSERS 20
OBJECTS 0 [No limit]
OBJMEM 0 [No limit]
PDUMP 0
RECCACHE 0
RINGWAIT 1
SAFEDIR 0
SDCLIENT 0
SH
SH1
SORTMEM 4096 kb
SORTMRG 4
SORTWORK /tmp
SPOOLER
STARTUP
TEMPDIR /tmp
TERMINFO
USRDIR /home/sd/user_accounts
YEARBASE 1930

151

SD Connection Methods
This chapter will document how to connect with the SD server. Connections can be “terminal” based,
or via the SD API server. Note all connections to the SD server are logged to syslog, with the identifier
“sd_Log”. If journalctl is installed on your linux box, the following command will display syslog
messages for sd:

journalctl -t sd_Log

or

journalctl -t sd_Log -S today

Terminal Connections.

In an open terminal program type “sd”. If the current os user has been setup for SD access you will see
the following:

152

To access a group account (that the user has access to, see CREATE.ACCOUNT) use the -a option:

Access to the SDSYS account requires root privileges. Login via sudo sd.

API Connections.

There are two methods to connect to the API server using the sdclilib library.

SDConnectLocal(account)

153

The local connection runs as the user of the process that invoked the SDConnectLocal method. The
sdclilib library creates a fork of the existing process and uses the c function execl() to replace the newly
created child process with the sd program running with the -C and -Q command options. The -C option
tells sd to established pipes for communication between the parent process and the child process
created with the fork(). The -Q option tells sd to run the API server program APISRVR.

SDConnect(host, port, username, password, account)

Remote connections are made with the SDConnect method. ALL remote API connections are via an
AF_UNIX socket located at “/tmp/sdsys/sdclient.socket” on the SD server.

This requires the following setup:

An sshd server needs to be installed on the SD server.

An ssh client needs to be installed on the client wishing to connect to the SD server.

Example ssh command:

Assume the SD server is running on a box with the network name Z400.

Issue the following command in an open terminal window on the client side:

ssh -L 4245:/tmp/sdsys/sdclient.socket -N <username>@Z400

- <username> needs to be defined on the SD server and setup as an sd user.

On the first time establishing the ssh tunnel, you should see something like:

 $ ssh -L 4245:/tmp/sdsys/sdclient.socket -N <username>@Z400 <== entered ssh
command

 The authenticity of host 'z400 (127.0.1.1)' can't be established.
 ED25519 key fingerprint is
SHA256:+uvamVBTjIN0OF4loZUAPgtgYxV5bCbwASBbZZTZR4g.
 This key is not known by any other names.
 Are you sure you want to continue connecting (yes/no/[fingerprint])? <== answer “yes”
 Warning: Permanently added 'z400' (ED25519) to the list of known hosts.

 <username>@z400's password: <== enter the password for <username>

Once you enter the password the terminal will just "hang" (its running the ssh client).

You should be able to verify the tunnel on the SD server by issuing the following:

154

% sudo lsof -i -n | egrep '\<ssh\>

In the SDConnect method you would specify port 4245. Note: the default port in the sdclilib.so
SDConnect method is 4245, if you use -1 for port number in the SDConnect call it will use port 4245.

The following is a connection example using Python and the sdclilbwrap.py wrapper found in the
install download in folder ../sdb64/sd64/examples/python/python_api_test
Note: This wrapper currently does not wrap all functions in sdclilib.so.

For simplicity, copy sdclilbwrap.py and the compiled library sdclilib.so to a test folder.
Start a terminal window and execute the ssh command.
Start a terminal window on the server and navigate to the test folder, start up python.
Note in the example use valid values for: <username>, <password>, <account>

xxxx@u2404:~/python_stuff$ python3
Python 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sdclilibwrap as sdmelib
>>> sdmelib.sdmeInitialize()
>>> status = sdmelib.sdmeConnect("127.0.0.1", -1, "<username>", "<password>", "<account>")
>>> print(status)
1
>>> results, err = sdmelib.sdmeExecute("who")
>>> print(results)
14 <username>
>>> results, err = sdmelib.sdmeExecute("listfl")
>>> print(results)

Files local to this account referenced by the VOC Page 1

File name.............. FType Description.............................. DATA Pathname.......... DICT Pathname..........
$ACC Dir File for account directory .
$HOLD Dir File for deferred prints $HOLD $HOLD.DIC
$MAP DH File for MAP output @SDSYS/$MAP @SDSYS/$MAP.DIC
$SAVEDLISTS Dir File for saved select lists $SVLISTS
BP Dir File for BASIC programs BP
BP.OUT Dir F BP.OUT
CUSTOMERS DH F CUSTOMERS CUSTOMERS.DIC
DICT.DICT DH File - Dictionary for dictionaries @SDSYS/DICT.DIC @SDSYS/DICT.DIC
DTST Dir F DTST DTST.DIC
MYTEST DH F MYTEST MYTEST.DIC
NEWVOC Dir F @SDSYS/NEWVOC @SDSYS/VOC.DIC
REPORTS Dir F REPORTS REPORTS.DIC
REPORTS_DEF Dir F REPORTS_DEF REPORTS_DEF.DIC
SD.VOCLIB Dir File - Shared VOC extension library @SDSYS/SD.VOCLIB @SDSYS/VOC.DIC
SYSCOM Dir File - System include records @SDSYS/SYSCOM
TESTDATA DH F TESTDATA TESTDATA.DIC
VOC Dir File - Vocabulary VOC @SDSYS/VOC.DIC
prefix_tst DH F PREFIX_TST PREFIX_TST.DIC

18 record(s) listed
>>> print (sdmelib.sdmeConnected())
1
>>> sdmelib.sdmeDisconnect()
>>> print (sdmelib.sdmeConnected())
0
>>> quit()

155

SD User and Group Accounts.

Accounts are created with the CREATE.ACCOUNT command. This command can only be issued by
the system admin, logged into the sdsys account via “sudo sd”.

SD user account default parent directory: /home/sd/user_accounts

SD group account default parent directory: /home/sd/group_accounts

CREATE.ACCOUNT USER <username> {NO.QUERY}

account created in: /home/sd/user_accounts/<username>
 owner : group set to <username> : ”sdu_”<username>,
permissions set to 775

 <username> must be found in sdusers group

CREATE.ACCOUNT GROUP <grp acct name> {NO.QUERY}

account created in /home/sd/group_accounts/<grp acct name>
owner : group set to sdsys : <grp_acct_name>
permission set to 775

Note: users will need to be added to accounts with:
MODIFY.ACCOUNT <account name> <ADD/DELETE> <username>

The CREATE.ACCOUNT command creates an entry in /etc/group for each account it creates. For
USER accounts the group name will be “sdu_<username>” for GROUP accounts the group name will
be <grp_acct_name>.

* Note: sd user and group accounts have the setgid bit set on the parent directory. When the bit is set
for a directory, the set of files in that directory will have the same group as the group of the parent
directory, and not that of the user who created those files. This is used for file sharing since the files
can now be modified by all the users who are part of the group of the parent directory.

CREATE.ACCOUNT OTHER acc.name pathname {NO.QUERY} - account created in pathname,
maintained for backwards compatibility. This will require manual editing of the accounts record
to specify linux group the account belongs to.
User should also set the setgid bit of account’s parent directory.

Notes:

CREATE.ACCOUNT saves the group name in fld 3 of ACCOUNTS record (for both
CREATE.ACCOUNT USER and GROUP).

156

 LOGIN and LOGTO(CPROC) checks to confirm the user is a member of sdusers group and
the ACCOUNT group before allowing access to the account.

CREATE.ACCOUNT adds users root, sdsys, (and <username> for account types USER) to the
entry created in /etc/group. However user membership to the group does not immediately
come into effect for the process creating the account. A Linux logout and login is required.
Signs of this issue are errors when performing file actions on the new account.

Example: Error 8207 creating file at line 416 of $CREATEF when using CREATE.FILE.

Example: On a system with 4 sd accounts setup (John, Jane, Accounting and Sales)

Linux Users

Linux Groups

SD Accounts

157

SD-Account Sales
Group: Sales
Allowed Users:

root
sdsys
Jane
John

SD-Account
Accounting

Group: Accounting
Allowed Users:

root
sdsys
Jane

Group Accounting
Members:

root
sdsys
Jane

User Jane
Group Jane

SD-Account John
Group: sdu_John
Allowed Users:

root
sdsys
John
Jane

User sdsys
Group sdusers

User John
Group John

Group sdu_Jane
Members:

root
sdsys
Jane

Group Sales
Members:

root
sdsys
John
Jane

Group sdu_John
Members:

root
sdsys
Jane
John

Group sdusers
Members:

root
sdsys
Jane
John

SD Account Jane
Group: sdu_Jane
Allowed Users:

root
sdsys
Jane

Parent Directories:

Directory Account Owner Group other

/home/sd/user_accounts sdsys (rwx) sdusers (rwx) (r_x)

/home/sd/user_accounts/Jane Jane Jane (rwx) sdu_Jane (rwx) (r_x)

/home/sd/user_accounts/John John John (rwx) sdu_John (rwx) (r_x)

/home/sd/group_accounts/Accounting Accounting sdsys (rwx) Accounting (rwx) (r_x)

/home/sd/group_accounts/Sales Sales sdsys (rwx) Sales (rwx) (r_x)

Notes:

User root has access to all accounts.

User sdsys has access to all accounts via sd. On entry to sd via sudo sd, the effective user is changed to
sdsys, with the ability to return to user root as necessary (controlled in CPROC).

User Jane has access to accounts Jane, John, Accounting and Sales.

User John has access to accounts John, Sales

158

TCL – The Command Line

TCL Commands Available in SD - Usage the same as in OpenQM 2.6.6

- Removed Commands and New Commands Unique to SD are listed at bottom
of this page

--

* Comment

$ECHO Paragraph tracing

! Synonym for SH

ABORT Abort processing and return to command prompt

ALIAS Create a temporary alias for a command

ANALYSE.FILE Analyse structure and usage of dynamic file

ANALYZE.FILE Synonym for ANALYSE.FILE

AUTOLOGOUT Set inactivity timer

BASIC Compile SDBasic programs

BELL Enable or disable audible alarm

BUILD.INDEX Build an alternate key index

CATALOG Synonym for CATALOGUE

CATALOGUE Add program to system catalogue

CD Synonym for COMPILE.DICT

CLEARDATA Synonym for CLEAR.DATA

CLEARINPUT Synonym for CLEAR.INPUT

CLEARPROMPTS Synonym for CLEAR.PROMPTS

CLEARSELECT Synonym for CLEAR.SELECT

CLEAN.ACCOUNT Remove records from $HOLD, $COMO and $SAVEDLISTS

CLEAR.ABORT Clear the abort status in an ON.ABORT paragraph

159

CLEAR.DATA Clear the data queue

CLEAR.FILE Remove all records from a file

CLEAR.INPUT Clear keyboard type-ahead

CLEAR.LOCKS Release task locks

CLEAR.PROMPTS Clear inline prompt responses

CLEAR.SELECT Clear one or all select lists

CLEAR.STACK Clear the command stack

CLR Clear display

CNAME Rename a file or record within a file

COMO Activate or deactivate command output files

COMPILE.DICT Compile I-types in a dictionary

CONFIG Display configuration parameters

CONFIGURE.FILE Change file configuration parameters

COPY Copy records

COPY.LIST Copy a saved select list

COUNT Count records

CREATE.FILE Create a file

CREATE.INDEX Create an alternate key index

CS Synonym for CLR

CT Display records from a file

DATA Add text to the data queue for associated verb or
program

DATE Display the date and time

DATE.FORMAT Selects default date format

DEBUG Debug SDBasic program

DELETE Delete records from a file

DELETE.CATALOG Synonym for DELETE.CATALOGUE

DELETE.CATALOGUE Delete a program from the system catalogue

DELETE.COMMON Delete a named common block

160

DELETE.FILE Delete a file

DELETE.INDEX Delete an alternate key index

DELETE.LIST Delete a saved select list

DISPLAY Display text

DUMP Display records from a file in hexadecimal and
character format

ECHO Disable or enable keyboard echo

ED Line editor

EDIT Synonym for ED

EDIT.LIST Edit a saved select list

FORMAT Apply conventional formatting to a SDBasic program

FORM.LIST Create a select list from a file record

FSTAT Collect and report file statistics

GENERATE Generate a SDBasic include record from a dictionary

GET.LIST Retrieve a previously saved select list

GET.STACK Restore a saved command stack GO Jump to a label
within a paragraph

HSM Hot Spot Monitor performance monitoring tool

HUSH Disable or enable display output IF Conditional
execution in paragraphs

LIST List records from a file

LIST.COMMON List named common blocks

LIST.DIFF Form difference of two saved select lists

LIST.FILES List details of open files

LIST.INDEX List details of an alternate key index

LIST.INTER Form intersection of two saved select lists

LIST.ITEM List records from a file in internal format

LIST.LABEL List records from a file in address label format

LIST.LOCKS List task lock status

LIST.READU List file, read and update locks

161

LIST.UNION Form union of two saved select lists

LIST.VARS List user @-variables

LISTF List all files defined in the VOC

LISTFL List all local files defined in the VOC

LISTFR List all remote files defined in the VOC

LISTK List all keywords defined in the VOC

LISTPA List all paragraphs defined in the VOC

LISTPH List all phrases defined in the VOC

LISTQ List all indirect file references in the VOC

LISTR List all remote items defined in the VOC

LISTS List all sentences defined in the VOC

LISTU List users currently in SD

LISTV List all verbs defined in the VOC

LOCK Set a task lock

LOGMSG Write a message to the error log

LOGOUT Terminate a phantom process

LOGTO Change to an alternative account

LOOP / REPEAT Defines loop within paragraph

MAKE.INDEX Create and build an alternate key index

MAP Display a list of the catalogue contents

MERGE.LIST Create a select list by merging two other lists

MESSAGE Send a message to selected other users

MODIFY Modify records in a file

NLS Set or report national language support values

NSELECT Remove items from a select list

OFF Synonym for QUIT

OPTION Set, clear or display options

PAUSE Display "Press return to continue" prompt

PDEBUG Runs the phantom debugger

162

PDUMP Generate a process dump file

PHANTOM Initiate a background process

PRINTER Administer print units

PSTAT Report process status

PTERM Set or display terminal characteristics

QSELECT Construct a select list from the content of
selected records

QUIT Terminate session or revert to lower command level

RELEASE Release record or file locks

RENAME Synonym for CNAME

REPORT.SRC Display @SYSTEM.RETURN.CODE at command prompt

REPORT.STYLE Sets the default style for query processor reports

RUN Run a compiled SDBasic program

SAVE.LIST Save a select list SAVE.STACK Save the command
stack

SEARCH Search file for records containing string(s)

SELECT Select records meeting criteria

SED Full screen editor

SET Set a user @variable

SET.DATE Set SD processing date

SET.EXIT.STATS Set final exit status value

SET.FILE Set a Q-pointer to a remote file

SET.TRIGGER Set, remove or display trigger function for a
dynamic file

SETPTR Set print unit characteristics

SH Execute shell command

SHOW Build select list interactively

SLEEP Suspend process until specified time

SORT List records sorted by record key

163

SORT.ITEM List records sorted by record key in internal
format

SORT.LABEL List records in address label format, sorted by
record key

SP.CLOSE Close a print unit previously in "keep open" mode

SP.OPEN Open a print unit in "keep open" mode

SP.VIEW View and print records from $HOLD or other files

SPOOL Send record(s) to the printer

SSELECT Select records meeting criteria, sorting list by
record key

STATUS Display list of active phantom processes

STOP Terminate an active paragraph

SUM Report total of named fields

TERM Set or display terminal window type and size

TIME Display date and time

UNLOCK Unlock a record or file

UPDATE.ACCOUNT Update VOC items from NEWVOC

UPDATE.RECORD Utility to update records in file

WHO Display user number and account name

WHERE Display pathname of current account

Commands Unique to SD - Only available to administrators

CREATE.ACCOUNT Make a new SD account

DELETE.ACCOUNT Delete a SD account

MODIFY.ACCOUNT Modify an existing SD account

164

Commands Unique to SD - Available to all users

MICRO Use OS micro editor to edit records

Encryption Commands Not available in SD

- source code for CRYPTO was not provided in original GPL release

CREATE.KEY

DELETE.KEY

ENCRYPT.FILE

GRANT.KEY

LIST.KEYS

RESET.MASTER.KEY

REVOKE.KEY

TCL Commands available in SD if the optional TAPE and RESTORE
subsystem is installed

ACCOUNT.RESTORE

FIND.ACCOUNT

SEL.RESTORE

SET.DEVICE Attach a tape device

T.ATT

T.DET

165

T.DUMP

T.EOD

T.FWD

T.LOAD

T.RDLBL

T.READ

T.REW

T.STAT

T.WEOF

Other OpenQM 2.6.6 TCL Commands not available in SD

ADMIN.USER

BLOCK.PRINT

BLOCK.TERM

CREATE.USER

DELETE.USER

HELP

LIST.USERS

LISTM

LISTPQ

LOGIN.PORT

MED

PASSWORD

PTERM

RESTORE.ACCOUNTS

SCRB

166

SECURITY

SET.ENCRYPTION.KEY.NAME

SETPORT

SET.QUEUE

SP.ASSIGN

UPDATE.LICENCE

167

Encryption in SD

Encryption, Decryption and Encoding are handled by the libsodium package https://doc.libsodium.org

Calling syntax:

encrypted_text = SDENCRYPT(Data, KeyToUse, Encoding)
 where:

Data = string to encrypt
KeyToUse = Encoded string which will decode to a crypto_secretbox_KEYBYTES bytes

sized key (currently defined as 32 bytes / 256 bits).
Encoding = one of:
 SD_EncodeHX - The key and returned encrypted text are Hex Encoded

(passed key is a 64 Character Hex encoded string which will be converted
to 32 bytes, encrypted text will be a Hex encoded character String 2X the
length of the passed string to encrypt).

 SD_Encode64 - The key and returned encrypted text are Base64 Encoded
(passed key is a 44 Character Base64 encoded string which will be
converted to 32 bytes, encrypted text will be a Base64 encoded character
String).

 decrypted_text = SDDECRYPT(Data, KeyToUse, Encoding)
 where:

 Data = encrypted string
 KeyToUse = Encoded string which will decode to a crypto_secretbox_KEYBYTES bytes

sized key (currently defined as 32 bytes / 256 bits).
 Encoding = one of:
 SD_EncodeHX - The key and passed encrypted text are Hex Encoded (passed

key is a 64 Character Hex string which will be converted to 32 bytes,
encrypted text will be a Hex Character String 2X the length of the
returned decrypted text).

 SD_Encode64 - The key and passed encrypted text are Base64 Encoded

Why libsodium ?

From https://doc.libsodium.org/

Sodium is a modern, easy-to-use software library for encryption, decryption, signatures, password
hashing, and more.

168

https://doc.libsodium.org/

Encryption, Decryption and encoding using libsodium package:

https://doc.libsodium.org/

This routine (and doc) is based on information found here:

https://doc.libsodium.org/secret-key_cryptography/secretbox

https://github.com/jedisct1/libsodium/blob/master/test/default/secretbox_easy2.c

https://doc.libsodium.org/password_hashing/default_phf

SD encrypts using crypto_secretbox_easy:

 int crypto_secretbox_easy(unsigned char *c, const unsigned char *m,
 unsigned long long mlen, const unsigned char *n,
 const unsigned char *k)

The crypto_secretbox_easy() function encrypts a message m whose length is mlen bytes, with a key k
and a nonce n.
k should be crypto_secretbox_KEYBYTES bytes (currently defined as 32 bytes / 256 bits) and n
should be crypto_secretbox_NONCEBYTES bytes.
c should be at least crypto_secretbox_MACBYTES + mlen bytes long.
This function writes the authentication tag, whose length is crypto_secretbox_MACBYTES bytes,
in c, immediately followed by the encrypted message, whose length is the same as the plaintext: mlen.

Functions returning an int return 0 on success and -1 to indicate an error.

 REM:
 A 128-bit (16 byte) key can be expressed as a hexadecimal string with 32 characters.
 It will require 24 characters in base64.

 A 256-bit (32 byte) key can be expressed as a hexadecimal string with 64 characters.
 It will require 44 characters in base64.

 Note we return the encryption output with the nonce appended to the end
 Rem to encode either base64 or hex before returning to SD!

SD decrypts using crypto_secretbox_open_easy:

 int crypto_secretbox_open_easy(unsigned char *m, const unsigned char *c,
 unsigned long long clen, const unsigned char *n,
 const unsigned char *k);

 c is a pointer to an authentication tag + encrypted message combination,

169

 as produced by crypto_secretbox_easy().
 clen is the length of this authentication tag + encrypted message combination.
 Put differently, clen is the number of bytes written by crypto_secretbox_easy(),
 which is crypto_secretbox_MACBYTES + the length of the message.
The nonce n and the key k have to match those used to encrypt and authenticate the message.
 The function returns -1 if the verification fails, and 0 on success.
 On success, the decrypted message is stored into m.

If the user wishes to use a password for encryption / decryption we need to generate a key for it.
The project recommends using crypto_pwhash to convert a password to a key, but to be reproducible
the routine requires:

The salt to be know

Values for opslimit and memlimit

https://doc.libsodium.org/key_derivation and https://doc.libsodium.org/password_hashing/default_phf

To do this we will use function:

 int crypto_pwhash(unsigned char * const out,
 unsigned long long outlen,
 const char * const passwd,
 unsigned long long passwdlen,
 const unsigned char * const salt,
 unsigned long long opslimit,
 size_t memlimit, int alg);

The crypto_pwhash() function derives an outlen bytes long key from a password passwd whose length
is passwdlen and a salt whose fixed length is crypto_pwhash_SALTBYTES bytes.
Passwdlen should be at least crypto_pwhash_PASSWD_MIN and crypto_pwhash_PASSWD_MAX.
outlen should be at least crypto_pwhash_BYTES_MIN = 16 (128 bits) and at most
crypto_pwhash_BYTES_MAX.
The salt should be unpredictable. randombytes_buf() is the easiest way to fill the
crypto_pwhash_SALTBYTES bytes of the salt.

Keep in mind that to produce the same key from the same password, the same algorithm,
the same salt, and the same values for opslimit and memlimit must be used.

SD provides two subroutines to support password to key creation:

!SD_GET_SALT(mysalt) - creates a base64 encoded salt and returns in mysalt.

!SD_KEY_FROM_PW(mypassphrase, mysalt, mykey) – creates a base64 encoded key returned in
 mykey. Where:

mypassphrase is a text password / phrase
mysalt – is a base64 encoded salt created via !SD_SALT()*

170

*This setup requires the user to save the salt used for key generation.

There is an example of usage found in BP/SD_ENCRYPT_EXT

171

Embedded Python in SD

SD from version 0.9-2 on includes the following embedded python functions.
These functions are found in GPL.BP and provide the BASIC interface to the python interpreter.

 PY_INITIALIZE()
 calls api function Py_Initialize() - start the python interpreter

 PY_IS_INITIALIZED()
 calls api function Py_IsInitialized() - Is python interpreter initialized?

 PY_RUNSTRING(py_script)
 calls api function PyRun_String() - run a python script from string

 PY_RUNFILE(py_script_file)
 calls api function PyRun_File() - run a python script from file

 PY_GETATTR(objname)
 calls api function PyMapping_GetItemString() - access the value of a python
 object.

 PY_FINALIZE()
 calls api function Py_Finalize()

 PY_CREATEDICT(dictname)
 create python dictionary object

 PY_CLEARDICT(dictname)
 clear python dictionary object via api call PyDict_Clear().

 PY_DICTVALGETS(dictname,key)
 get dictionary value for item key, returned as string

 PY_DICTVALSETS(dictname,key,value)
 set (update) or create dictionary value for entry key.

 PY_DICTIDEL(dictname,key)
 delete dictionary key / value

 PY_STRSET(strname,value)
 set (update) or create string object strname with string value.

 PY_STRGET(strname)
 get string value of string strname

Important Note:
Once the python interpreter is initialized within SD, it stays active until a
PY_FINALIZE is issued. On exit SD will execute PY_FINALIZE if the python
interpreter was previously initialized. There seems to be an issue with
Initializing and Finalizing the interpreter multiple times with in a process.
Therefore, if you are sure an SD process is done with the python interpreter and
will not re issue a PY_INITIALIZE, it is safe to call PY_FINALIZE (and free up
memory taken by the Python interpreter) otherwise allow SD to perform the
PY_FINALIZE on exit.

172

In order to use these functions in a BASIC program, a DEFFUN statement for each
function must be included in the BASIC source. The SDPYFUNC.H include file found
in SYSCOM provides the DEFFUN statements.

Remember strings are UTF-8 in python and must be converted to bytes (decode in encode out). Good
reference here: https://nedbatchelder.com/text/unipain.html

There are two sample programs PY_TEST (in sdsys/ BP) and PY_GUI_TEST (in
examples/python/embedded_python)

PY_TEST

PY_TEST is a BASIC program which test the python functions listed above.

PY_GUI_TEST

Program creates a simple gui dialog via a script file executed from with in SD.
User populates fields, hits ok, program prints entered data back out.

Uses FreeSimpleGUI which must be installed prior to running the program.
https://github.com/spyoungtech/FreeSimpleGUI

Script file can be found in example/python/embedded_python/sdguitest.py.

edit PY_GUI_TEST line for correct location of python script file.

 script_file = "/home/xyz/python_stuff/sdguitest.py"

NOTE
This program cannot be run from root unless you have played with your systems default settings. Either
copy the program to your BP directory and compile, or compile and catalog global, running from your
user account.

There is also a report writer, SD Quick Report, which is a simple spreadsheet based report design and
creation package written to test SD's embedded python.

173

	SECTION ONE A Multi Value Primer
	What is a multi-value database?
	Non-conformity to relational rules
	Loose data typing
	Data storage
	Hashed files
	Built in programming language
	Built in reporting language
	Summary

	Multi-Value Terminology
	Accounts
	Users
	Database files
	Program files (or directory files)
	The VOC file
	Records (or items)
	Fields (or attributes), values, and sub-values
	A Note On Capitalization
	Command Variations
	Conventions In Manual

	Multi-value File Concepts
	The data portion
	The dictionary portion
	Creating and Deleting Files
	Standard files
	Directory files
	Multi-part files
	Single level files
	Q-Pointers
	Listing the files

	Creating an Example Database
	Create a file
	Prepare the data
	Create some dictionary items
	Import the data
	Add another file to the database
	Add a third file to the database

	Editors
	The command stack and command editing
	The dot commands

	Editing keys
	Preserving the command stack between sessions

	SD Database Files
	Background
	Hashed Files
	Traditional hashed files
	Dynamic hashed files
	Analyzing a file
	Setting or changing parameters
	Example file configuration

	Directory Files
	Data Storage
	Variable length fields
	String representation
	Internal Data Storage
	Binary Data

	File VOC Entries
	Basic concepts

	Different types of VOC entries
	Dynamic and directory files
	Multi-files

	Q-Pointers
	Manual creation of F-type VOC entries
	Alternate Key Indices
	Summary

	SDQuery
	Anatomy of a SDQuery Statement
	General syntax
	Selection clause

	Creating a dictionary item for use in selecting data
	Multiple selection criteria
	Comparison against a database value
	Direct identification of items
	Sort clause
	Display clause
	Modifiers
	Grouping records
	Generating summary information
	MIN, MAX, AVG
	Suppressing detail lines

	Formatting column headings
	Totaling data
	Page breaks
	Grand totals
	Scaling data
	Page headings and footings

	Printing and Report Styles
	Printing
	The LPTR keyword
	Print units
	Initialising print units
	Defining your own print units
	Spooling print files
	Deleting print files

	Miscellaneous Aspects of SDQuery
	Default display and phrases
	Saving SDQuery statements for later use

	Introduction to SDBasic
	General Considerations
	What is SDBasic
	What is covered here?
	Coding styles
	Where is the GUI?

	General Programming Issues
	Creating, Compiling, and Running Programs

	Statements, variables, tokens, constants, and operators
	Statements
	Variables
	Tokens
	Constants
	Multi-value Variables
	Operators
	Substring extraction
	Pattern matching
	Alternative relational operators

	Assignment
	Assignment shortcuts
	Substring assignment
	Null values

	A simple program
	Program
	Analysis
	Detail points
	Some useful functions and statements
	CRT and DISPLAY
	PRINT
	INPUT
	DCOUNT
	FIELD
	ICONV / OCONV
	LOCATE
	FIND

	Program control structures
	IF-THEN-ELSE
	CASE
	Loops
	Conditional loops
	For-Next loops
	EXIT and CONTINUE

	Subroutines
	Program structure
	Internal subroutines
	External subroutines
	Local subroutines
	User Defined Functions

	Files
	Opening files
	Error handling

	Selecting data in files
	Internal select
	External select
	Which selection should I use?

	Reading from files
	Getting the ID from the select list for the READ
	Writing to files
	Closing files
	Other methods of file handling

	Multi-user issue
	When should locking be used
	File locks
	Record locks

	SECTION TWO Getting Started With SD
	Installation - Debian 12 with Gnome or Ubuntu 24.04
	Installation on server without a GUI
	Configuration
	SD Connection Methods
	SD User and Group Accounts.
	TCL – The Command Line
	Encryption in SD
	Embedded Python in SD

